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The statistical dynamics of homogeneous turbulence
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The steady distribution function for homogeneous turbulence is studied starting
from Liouville’s equation, modified by the introduction of an instantaneously
fluctuating external force, which acts as a random source of energy. A new
technique for solving Liouville’s equation is presented giving a systematic de-
velopment of the concepts of turbulent diffusion and turbulent viscosity. It
amounts to a consistent generalization of the random phase approximation.
When the rate of input of energy into the kth Fourier component «, has a power
form A|k|~, the functional form of the mean value {u,u_,) can be determined
exactly in the limit of large Reynolds number; it is 4h%|k|-#5+2%. Liouville’s
equation proves an inadequate basis for the steady time-dependent mean
{ug () u_y (¢')) and a more general equation is derived. The new equation can be
solved in a similar way and shows that the time-dependent correlation starts
like a Gaussian in time, then passes through an exponentially decaying state,
then eventually has a power dependence [t —¢'|~7ik,

1. Introduction

The problem of understanding the statistical dynamics of turbulence is a
difficult one for many reasons. It is reasonable therefore to study the problem
under the simplest non-trivial conditions and inquire whether if, under any
physically possible conditions, solutions describing the statistical distribution of
fluid velocities of a turbulent system can be obtained, even if by ‘physically
possible’ one may mean situations which, though conceivable, are not obtainable
in a laboratory. In this paper the problem of steady homogeneous isotropic tur-
bulence will be studied under such idealized conditions, allowing the exact form
of the correlation functions to be determined, and thereby it is hoped to provide
a foundation for the study of more realistic cases. The physical situation in an
ideal turbulent fluid sounds quite straightforward. There is some mechanism
by which the energy enters the system, say by the effect of a fluctuating force
F(r,t). This energy then spreads amongst all the degrees of freedom of the
system via the non-linear equations of motion and is eventually lost through vis-
cosity. If the mechanism of input is postulated to be statistically defined, then it
follows automatically that the rest of the system is also only defined statistically,
and the problem can be reduced to the solution of differential equations in terms
of the (infinite) number of degrees of freedom of the system. A similar situation
arises in the kinetic theory of gases, where the solution to every problem is a
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solution of Liouville’s equation. But from Liouville’s equation there needs to
be two further steps taken before a practical solution to any problem can be
obtained: first, the Boltzmann or Fokker-Planck equation has to be derived,
and then this equation has to be solved. Something of an analogous programme
will be attempted in this paper but the actual procedures will eventually differ
very considerably from those of conventional statistical dynamies since almost
without exception the approximations employed in kinetic theory fail as do the
methods presently employed in the quantum theory of many particles and the
quantum theory of fields. Liouville’s equation, and its generalization when a
random input of energy is present, turns out to be a useful starting point for the
derivation of the steady distribution function of velocities, but it is inadequate
for the study of the correlation functions when the velocities are taken at different
points in time and a more general equation is derived to handle this problem.
After an intuitive discussion of the problem a general method is given for solving
both Liouville’s equation and the new extended equation. The solutions are then
discussed in detail and it is shown that for a certain class of input behaviours
exact solutions can be given for the structure of the velocity correlation function.
The paper concludes with a discussion of the validity of the method of solution.

2. Liouville’s equation

The simplest situation resulting in turbulence is for some random force to act
on the fluid, the force being defined in the simplest possible statistical way.
The simplest problem is to find the value of the velocity correlation functions of
the steady homogeneous turbulence which accompanies the action of such a
force, all velocities being measured at the same time. This problem is set up in this
section by deriving a differential equation which will describe a fluid excited by
a random force.

Consider an incompressible fluid of unit density occupying a large volume L3.
Let an external force #(r, ) act upon it so that the Navier—Stokes equations for

the velocity are

aa_ltjz WU —(U.V)U—-Vp+ F, (2.1)

and the incompressibility condition is
v.U=0. (2.2)

It is convenient to consider the Fourier components of the velocity as variables,
so writing

Uy(t) =fU(r, t) e’-r @By, (2.3)
one has U(r,t) = L33 &2 Uy(t), (2.4)
k

where k runs over the values 2rL—Y(n,, ny, ng), the n being integers. For an in-
finite system this goes over into

U(r, 1) = (2m)-3| U (t) e=%-* d3k. (2.5)
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Cyclic boundary conditions have been adopted so that the (complex) variables
U, and U_, can be employed, they being more convenient than the real variables.
It is useful to make the transition to the infinite system at will, so to this end

define — (2n/Ly?
so that AY — | d*k.
k
Using (2.2) one may eliminate the pressure from (2.1) and obtain
U
—a—tl* — kU, + = ) z{ Uy ;.) U;—kk2(k. Uj) (j. Uy )} + F — Kk (k. A,
(2.6)
k. Uy =0, (2.7)
or, writing in Cartesians,
oUt .
atk = —vkUg+ ¥ MU UM+ z FLDEE, (2.8)
5518,y By
where DgF = 88 — kP K2, (2.9)
and My, = (;A) (0%857 — k*kPjYk—%) 6 _y ;1. (2.10)
The matrix M can be written in a more symmetric form with the aid of
A o o
Mgy = (2m)33 (KDY + kY DEF) Oy (2.11)

The symbol 6,; is unity when k+j+1= 0 and zero otherwise. For an infinite
system it goes over into a Dirac § function ‘

Ot = AS(k+j +1). (2.12)
The mean velocity U, is zero, so that (2.8) represents a set of variables Uy
coupled non-linearly to one another by the term M, the non-linear term in the
equation for Uy not containing Uy, itself.

To obtain Liouville’s equation one must introduce the function
F(...,uy,...;0)

which gives the probability that the Uy have the values uy at the time ¢. For any
particular system this must be a ¢ function for each u,

F= l;Ia[uk—Uk(t)]’ (2.13)

where Uy(t) is the solution of (2.8) for the particular system being considered.
Differentiating with respect to time

oF Uy 0
= (1)), 2.1
D U ) (2.14)
A straightforward manipulation now gives Liouville’s equation (Hopf 1952)
or _ )y —§—(—Vk2uk+ > M“ suful + Z@“ﬂg‘"ﬂ)ﬁ’ (2.15)
ot ke, & aua i la,

16 Fluid Mech. 18
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This can alternatively be written in configuration space in terms of functional
derivatives
f 5u(r (VV2u+(u Viu- Vf47r r—r'|71V/ (0. V) u'd¥’
— (4m)1V |r—r'|—IV'ﬂ'd3r')F. (2.16)

This equation is linear in ¥ so that, in the usual way, an ensemble average will
satisfy the same equation but will be described by a smooth function F.

To specify the problem completely one must now specify the input force #,.
The simplest way is to take it to be a random function of time so that the prob-
ability that, over a period of time 7, it is found to have the value #(f) is

P(FD) = A exp (- zAffwk =) F)dde ), @17)

where 4" is the appropriate normalization, and g—'is the functional inverse of
the correlation function g,

fgk(t—'r) g {7 —t')dr = 8(t—-t'), (2.18)
(Full) Fylt)y = N fwk ) P(F) oF
= gut—t') A1, (2.19)

The symbol 6% implies integration over each Z(¢) at each time. (For a discus-
sion of integrals of this type see Gel'fand & Yaglom 1960). This distribution
implies that the mean of several % is given by

<<7'kl(t1) g:kz(tz) g:km(tzn)) = Zg(11—T2) Y73 Ty) - §(Tap_1—Tay,)
x 0 d,

KytKy "3+'¢4 ot Ykep_1tKgp?

where 7, ... 7,, is a permutation of ¢, ... ¢,,, k; being the k appropriate to 7;, and
the sum is over all permutations. Physwally if the force & is to cause turbu-
lence one expects g,(f —¢') to decrease much faster in time than the corresponding
correlation function of the velocities (U () U_,(#")) so it is reasonable to specialize
gy to the very convenient form of instantaneous fluctuations

gt —1t') = b 6t —1). (2.20)

In this case it can be shown (Appendix 2) that if the mean distribution function
averaged over the fluctuating foree is called (F), i.e.

Fy = [Fr(71) 67, (2.21)
then Y

0 ]

ka, f
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Since the mean rate at which energy enters the system
aa—th%Euk.u_k@") 11 du; (2.23)
k i

is now fixed and equals f hy d3k there will exist a solution of (2.22) which will be
time independent and correspond to the steady mean state of the turbulent fluid.
Thus the probability of finding a velocity field u, in the steady state with random
input of %, per mode is given by the solution of

G 4 0 a a
Zoe (A—l ST I g VU —ﬂg}le_iglufug) (Fy=0. (2.24)
This equation is a good starting point to discuss (¥) but one also needs the mean
values of quantities like Ug(t) Uy (') and Ug(t,) Uf(t,) U} (t5). (It will be understood
that the words ‘time dependence’ in this paper will always mean the dependence
of such quantities as (U(f) U*(¢')) upon t—¢'. The problem of the.decay from
a turbulent to a quiescent system will not be considered here.) The averaged
Liouville equation in prineiple contains this information in its Green function @
which satisfies 5

(a—t—ff) G = TI O(uy—uy) 8(t—1t'), (2.25)

k

£ being the operator in equation (2.22). But in practice this is not a useful
starting point and a more general approach will now be given.

3. The distribution function in generalized phase space

The Liowville equation is a useful starting point in the kinetic theory of gases
for one can further approximate (2.22) or (2.25) into a Fokker—Planck or Boltz-
mann equation, due to the fact that one is able to distinguish the time taken
between collisions and the time taken during a collision, the latter being much
shorter than the former. It is this feature which makes the separation of the time
from all the other variables such a useful feature of Liouville’s equation. In
turbulence, however, it will be shown (and is indeed clear) that no such separation
can take place and one needs an equation in which time is treated on the same
footing as the space variables, in order to handle this or indeed any problem in
which collective behaviour is important. The distinetion between a method
which describes the evolution of a system in time, and a method which discusses
the entire history of the system is the distinction between Hamiltonian and
Lagrangian formulations of classical dynamics. Liouville’s equation gives a
phase space description following the Hamiltonian point of view (even though
there may be no Hamiltonian function as is the case here). So what is required
here is a method based on Lagrangian statistical mechanics. This is deceptively
easy to write down, but has to be developed somewhat before it reaches the useful
form (3.5) below.

It is convenient to use the four-dimensional Fourier transform

Uy, = fU(r, t)exp (k. r +ikgt) d3rdt. (3.1)

16-2
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Then equation (2.8) becomes

— (tky + VK2 U+ T My, UL UY + %;go*gggﬂ =0, (3.2)

where the (italic) &, j, I now stand for (k, k,) and so on; in future this notation
will always be used. In analogy with (2.13) one may introduce the probability
of U, taking the value u,, i.e. the probability, not of finding the system in a par-
ticular state at a particular time, but the probability of finding the entire history
and future of the system. For a definite system this has a 4 function form

P =TT 8w~ Uy). (3.3)

Now since U, satisfies (3.2) it follows that if the whole of the left-hand side of

(3.2) is denoted by X,
X, P=0 (allk). (3.4)

This is then the Lagrangian description of the system. It clearly implies that
P is a & function of the equations of motion (3.2), and is rather too general a
starting point. One expects the system to fill phase space and will be content if
for example all the moments of (3.4) are satisfied rather than the continuous
infinity of equations which constitute (3.4). In other words one would like one
equation which for a statistical system will have the appropriate solution of
(3.4) as its solution. To get one equation, (3.4) must be multiplied by some opera-
tor which is a function of k and integrated with respect to &, and the resulting
single functional equation should be capable of reproducing the moments of (3.4)
obtained by multiplying by u,u,... and averaging over all u. Clearly the only
operator which will fulfil this role is ¢/cu;, and the resulting equation is

ity 5% (Gt vkt~ S Mt — SOPFHP =0, (35)
There will be solutions of this equation which will not be solutions of (3.4) but
the mode of solution presented below will always guarantee that the solution
obtained is the correct one. By multiplying by u; (or indeed any function of the
%) and integrating over all %, for a definite system (i.e. one with P given by
(3.3)) it leads back to (3.2). But since it is linear it holds equally for ensemble
averages. The term ensemble average must not be taken literally, however, since
it no longer has the same meaning as ‘ time average’ as it does in normal statistical
mechanies. If the forceis distributed according to (2.17) which is now to be written
as

PUF]) = /Vexp(- %]fdkoﬁ"'kﬁ_kA/g), (3.6)

then the mean P can be written down at once as a functional by substituting
from (3.2) into (3.5). This gives

{(P) = Nexp ( —-AY fdko{[(iko + vk uf— 3 M‘f‘_ﬁ,g'ﬂ ufu}']
a,k By, il
x et [(—iko+vk?)uf — 3 Myl uzf]}) . (37)
vy
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where the symbol 4" is always used for the appropriate normalization. This
gives an illustration of what to expect for the mean solution of (3.4). Though
in principle it is a solution to the problem of turbulence, as it stands it is quite
useless in practice. The task now to find a method of deriving (F) and () in a
useful form and to this end a simple model will now be discussed in detail which
will suggest the right approach.

4. A simple model
The non-linear term X Muu causes the turbulence and the simplest way to
think of it is as a force which as far as one is concerned is roughly random. This
suggests examining the problem of the response of a linear system to a random
force in detail and though all the results of this section are well known it is useful
to be reminded of them and to present them in an appropriate way. Consider
then the motion governed by
U _ju+# (4.1)
ot
where % is statistically specified asin (2.17). (Thelabel k and the vector character
of U are dropped in the model; J > 0.) Then Liouville’s equation is

2 0 -
(a—t—%(Ju—./))F -0, (4.2)

or, more usefully, the Green function of Liouville’s equation satisfies
°o_2 J ﬁ))G( ) = 6 -t (4.3)
ot %( U— u,u i, )‘— U—u ( ) .

This function has the property that it propagates F, i.e. if F(u,t’) is the value
of F at the time ¢', then at a subsequent time ¢

F(u,t) =fG(u, w8, ) F(u', ) du'. (4.4)

Now if one starts at a time ¢’ with a definite ¥(u, ') and the force &# has a distribu-
tion (defined from ¢ on) of Z([#]) then the average of F at t, (¥ (u,t)) say, is
propagated by the average of &, (@) say, defined by

(@) = f P(F)) G(F)) OF. (4.5)

This follows by multiplying (4.4) by & and integrating over the function %.
The mean Green function is well known in the theory of Brownian motion so
the result of the integration (4.5) will be quoted. (A derivation is given in
Appendix 1 since its generalization is needed in Appendix 2.) It is

(6 = (z)% exp [ — (u—u e I(t, )] Ot — 1), (4.6)

m
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where f f exp|—J({t—71y) —J(t—7,)]g(T, —T15)dT,dT,, (4.7)
OU—t)=1 (t>t),
=0 (<),
and ¢ is defined by (2.19). Two properties of I need to be noted. First

It,t)y=0
and secondly

lim I(¢,¢') = const.

t—t —w
1 oo o]
= éfo fo exp [ —J (7, +7p)]g(7, —T,) d7,d7,y
= 3J say. (4.8)

Thus (&) loses its dependence upon %’ as ¢ —#" tends to infinity and this implies
that whatever F(u,t’) is, (') settles down to the Gaussian

g\t 2
(Fy — (277) exp ( 127). (4.9)
In particular, if g has an exponential form

g=ye™, (4.10)
then
1(,8) = 3T +0) ' — (T + @)l exp [— (J +0) (= 1)]

+J Y +w)Lexp—2J(t—t)]}, (4.11)
and g=JYJ+w) 1y (4.12)

Since (G) propagates (F') the equations for (F) and (G’ can be written down from
the exact expression (4.6)

B aau('] +{; gtIJ“H} )]<G> Ou—w') (1), (4.13)
oz (et lai +01) ) [ =0 (4.14)

It follows that as ¢ —#’ tends to infinity, the steady value of (F') satisfies
0 0
v -1 = 4.15
52 (7 40071 2 ) [ = 0, (4.15)
which has the solution (4.9), i.e
1
By = [ expl -t +o)20), (416
while (&) settles down to the solution of

[%Jr%( Ju =y +m) )]<G>_au w)8(t—1). (4.17)
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A straightforward generalization is to the case of several & characterized by
constants v, @,. Then (4.17) has the factor y(J + w)~! replaced by

27 +@) (4.18)

Another way of stating these results, which will turn out to be the basis for subse-
quent work, is to observe that if the equation for @ is written

a a a 82 (274 a ’ ’
l:ﬁt au(Ka +Ju )+K8—M—J@]G—3(u—u)8(t_t), (4.19)

where K = oIjot+JI,

and this is expanded in terms of the solution of (4.13), which for the moment will
be called I' rather than (&), then

G = I‘—UF%%I‘}+Uﬁ‘?%FJ’ 0

In this expansion terms of order v» and of order #?” (and mixed terms like
yr—mgin—im) are collected together. Upon averaging the expression in each
brace vanishes, as do all terms odd in %, and (G) =T

Clearly the second-order brace can be considered as defining 7,

lim <ff1v F = ,I‘> ny (J + @) 2T fou?, (4.21)
t—{'—wo

and hence T, i.e. (@) itself. This of course is just what one would expect from a
Gaussian distribution: it is specified by its second moment, which in this case is
then related to the externally given y, w, and J. A straightforward extension of
this property will now be developed to get an intuitive solution of (2.24).

_erazr/au2}+.... (4.20)

5. A simple derivative of the turbulent distribution function

In this section the model discussed in §4 will be used to derive the equations
for the mean distribution function, using an intuitive argument. Consider then
the equation

0 0
— hE DL AL+ vK2ug — MAY ufuy )]
[at aZkauk (a b i, IZ/?}' i !

xG(...ugug...; 4t =116, —uy) st —¢t'). (5.1)

(The mean value signs {...> will now be dropped since these alone are referred to
when discussing F' and @.) This equation describes the physical situation of
energy entering the system due to the fluctuating forces, at a rate &,, and leaving
due to viscosity vk2, The term X Muwu neither creates nor destroys energy but
mixes it up amongst the various u,. To some extent, as far as one particular
u, is concerned, £ Mwuu must appear as a random force of the type discussed in
§4. But in addition the force acting upon u; say will contain a term Mu,u_y
so that the gain of energy by the component u; will depend on the magnitude of
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u, and hence the loss of energy by u, will depend upon its magnitude. One can
expect then that as far as one component uy is concerned the effect of the rest of
the turbulent fluid will be to produce a diffusive term represented as in §4 by a
second derivative, and also a term which represents a dissipative force propor-
tional to u,, i.e. to use the nomenclature of the Fokker—Planck equation, a
dynamical friction. Thus one may expect the change of just one component u,
(and u_, for they always appear together) to be described by

0 0
[é} Za 1(291; dkA" +‘Uk""k)

—g]gz;i—k(iﬂ]@ B A~ 18 ﬂ+wku )] Glugu_gug v t—t')
=0 —u)d(u_y—ul )0t —¢') (dy=d 0 =wy). (52)
In the same way the steady distribution function will be governed by

[ .-a__( apf A—1 i -2
\Z g \ 3 %A d“auﬁwku“
a a.ﬂ —1 a a &
+§auik(%@k A dk‘a"lzg—i-a)ku*k)}f(uk, ll_k) = 0 (53)

The diffusion constant dy, and the total viscosity w, can be written
dk = kk+Sk7 (5'4)
Cl)k = sz +Rk3 (5‘5)

i.e. total input into components u, (and u_y)
= external input + input from all other components; (5.4)
total output

= viscous loss (i.e. external output) + output into all other components. (5.5)

It must be emphasized that this section is only introductory to the next,
so the derivation of S, and R, which will now follow will employ assumptions
that are unnecessary and sometimes incorrect, but it will turn out that the forms
of 8, and R, so obtained are correct, so that the consequences of assuming (5.2)
are better founded than (5.2) itself. With this proviso the solution of (5.3) is
clearly

flug,u_y) = (Afy27q,) exp (— SuguZ Algy)
=lexp(—Jufu* Alg) say, (5.6)
where G = dy/wy- (5.7)

(There is always implicit in f the restriction divu = 0 so that the normalization
is appropriate to two degrees of freedom rather than three. The 24 in (5.2) and
(5.3) ensure that the constraint is not violated by the motion, but in practice
it is most convenient to keep the constraint as a subsidiary condition and in
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effect drop Z from the equations.) Then the mean of U$U?, can be expressed in
terms of ¢,

UL zfu;‘u’fkf(uk,u_k) du,du_, §(divu) (5.8)

= A-1g, D2F. (5.9)

If (5.2) is multiplied by u{ on the left and by fu” ; on the right one obtains upon
integration over all « the relation

COg@) UP L (8)) =fu;§ Geu'?, fugu’ ) é(divu)dudu_dugdu’ . (5.10)

= (U0 UL(0)y exp [~y (t— )] (¢ > ). (5.11)

From thege results and those of §4 one may obtain S, and R,. First, consider S,
which is the analogue of the expression

XY +w,)

The present wy is the analogue of J, the lifetime associated with the one com-
ponent k, and the w, is the lifetime of the fluctuating force, i.e. of

The expression vy is the analogue of the mean square of the force, i.e. of
(S M ufay S MERY ul ). (5.12)
Byl BvinY

This is readily evaluated if it is assumed that in the first approximation the
components are independent and their distribution function
F = Hf ) (5.13)
= Hljexp[—— X uiut; Algyl. (5.14)
) x,}

(It must be understood that terms are not counted twice in the exponent.) One
then has the integral

b uf wf ul’y = |uf uf uf ul exp (— Eu u* A [g;) 6(div u) Id, ITF

= DPDEYS; 10y 4 q]q,/A“r@”@” RERTLIES
+ DDV 841 S5y G0/ D2

(The possibility of j =1 = j" = 1’ gives a contribution smaller by a factor A than
those quoted and is disregarded. Of the three terms the first gives zero, a property
of M=#7, and the answer stems from the remaining two which have j+j' = 0,

1+1 = 0 and 1+j' = 0, j +1' = 0 respectively. This then implies that the E w,

is represented by w; + . Finally then, using (5.9) for the means,

,@ga'sﬁ_lzﬁ (0 + 0y + o)t ML MERY (DEE DY + DIV DY ) g0, (5.15)
L a, 0,7
al, B, y°
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or in the limit of infinitely large volume

Liu g 4% 4%

. (5.16)
(Uk+wj+(01

Sk =
The expression for L is derived in Appendix 3 from (5.15) and is most con-
veniently written

Lyy = (2m)88(k+j +1) 3{k?[1 — 2 cos®O,; cos? O, + cos 0,,; cos Oy, cos 6]
—(12+j2+1.j) (cos? Oy, — cos?0,;)}  (5.17)

(where it will be noted that the second part of L is antisymmetric under the
interchange of 1 and j, so it contributes nothing to the integral for S;; but the
notation is very convenient when R, is evaluated below).

To obtain R, one may argue this way. The coefficient can be derived by expand-
ing the complete ¢ about [1G}, and averaging the analogue of the series (4.20)
on the assumption thatf ~ T] fi. Thus S, arises from the term

k

f f a—M‘iﬂlzﬁuﬂu{HG zaaa MFrwf o TG U f' dw'.  (5.18)
afiy; it OUE P

But there is another term with a non-vanishing average when all but u,, u_, are
averaged; it is

¢
> ——»M“ﬂ uf uy HG I
f faﬂy j1 O sl ! w sy Ouf”

x{M“ﬂV ukﬂuy +M“k7 u,ﬂukV}HG'HfHdu (5.19)

Now it is a tricky matter to average away the u, (p + k, —k) but the correct
procedure is to consider the ¢/0u;. acting upon f,' giving

a8y yf uA
S Mg 1le, 3 YR
afy; 1OUK » wpyiry
x (Mffl'{/?ﬁ“/' ul;/f’u]f?/' +Mf5§,’£“/' wA w1 G ILf ' Tldu'.  (5.20)
P

Just as with S this now gives By (6/0u$) ul, where

f Ly 7y (5.21)
(t)k+(l) +(l)l
and Ly, = M55 (MY D7 DEF + Myf =277 907), (5.22)

and when calculated agrees with the definition of (5.17). This derivation of
R, is of course little more than an argument, but it is not worth rigorizing it by
this method for a proper derivation is given in the next section.

That the loss of energy should appear as a dynamical friction term was origin-
ally postulated by Heisenberg and the customary term ‘turbulent viscosity’
can be adopted for By (Hinze 1959) which will be seen to have precisely the same
role as viscosity in (5.2), (5.3).



The statistical dynamics of homogeneous turbulence 251

The essential point of this section lies in the need for using two functions S
and R, to describe the turbulent state. This has already been noted by Kraichnan
(1959) in a paper which though differing in detail, has a very similar point of
view to that of this section.

6. The general method of expansion

The basic assumption of this paper is that there exists a degree of randomness
in the steady state of turbulence which permits the calculation of the turbulent
viscosity. In this section a systematic expansion will be given for these two
quantities, the expansion parameter being in effect the degree of randomness of
the system. That of course is rather an inprecise statement, but a full discussion
of what precisely one is expanding in terms of cannot be given without more
experience of the expansion and its consequences, so it will be deferred to §10.
The time independent case is the simpler so it will be dealt with first. One
needs then to find the solution of (2.22), in particular one may expect the solution
to be simpler in an infinite volume than in a finite volume. In such a large
volume the argument of Maxwell in kinetic theory will apply: that if in some
region V; the probability distribution of the « is Fy, , and in another adjacent
region V, it is Fy, , then taken together in the region V; + ¥, the distribution function

will be Fy vy = Fy Fy, (6.1)
and hence I, = AVexp {f d%Z([u])} ) (6.2)
v

where Z is a functional of the « which contains no reference to the boundaries.
For example, the case of a random external force which leads to (2.22) can be
solved in the absence of the mixing term M to give

Z =fd3ku;’,‘u‘ikyk2/hk (6.3)
:fd3x{fd3yvauﬂ(x) h{x—Yy) V“uﬂ(y)}. (6.4)

In general, however, Z cannot be determined exactly and even if it could it
would still leave a most intractable functional integral to be performed to
obtain the various moments. Indeed the only functionals which are known to
be integrable are polynomials multiplied by the exponentials of quadratic forms.
Now the eigenfunctions of the kernel

0 0
35— ¥ A 21 +A K
{k,aaui’,‘ (% 8u{f9k dp A +wkuk)+ } (6.5)
are the (complex) Hermite polynomials multiplied by the exponential

exp (— X uguly /).
Since the kernel is expected to play a central role in any expansion, this suggests
expanding I as a series in the Hermite polynomials

an nk(uk: u—k)
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defined by H, (0 uy) = [(my + 1) 73 [(n_y + 1) 1],
T A L
where F, is given by (5.14).f Thus one writes
F = Ef[n] H gm0 (6.7)
where n is a vector in the Hilbert space of all the Hermite polynomials
n={_{.nm,ny...). (6.8)
The eigenvalue associated with the label n is
zk] W M. (6.9)

It will be seen that the ny, n_,th polynomial is a tensor of rank n,+n_,. (The
tensor indices are not written in explicitly.) Well-known relations exist between
the polynomials such as

d q
7y Hnen = ( Ak) (g + VA, —nf o (6.10)
A
uankn ' (nk+ 1)% an+1 n_xg Enl%an—l n_g’ (6~11)
but in practice only a few of the polynomials will be needed in an infinite system
Hy =1,
Hy, = w42, (6.12)

Hy._ = (U g — @A),

These polynomials are orthogonal to one another against the Gaussian F,

but are not normalized to unity but to (g,/A)™&+"k,
Consider the differential equation for F rearranged in the form

0 0
{E (E A~ lgkﬂdk+wkuk) > M—k)luﬂulya—zﬁ

ks OUR ou” afy;kil
— z: > — 0 SADES + Rwg )} F = 0. (6.13)
a’“k 7 ouy
Now, following the ideas of §§4 and 5, ascrlbe to S and R the (superficial) order
M? and consider F expanded as a series in M. Then one has

F=F+F+F+..., (6.14)

where, if the operator 3 é%L (E 5l AL A + wy uk)
k,a k

is denoted by ¥, AF, = E MEr ubuy Y (6.15)
Kjl; afy au——k
AF,= 3 MHf 0 F+E—a—~(za 19"‘“’S+Ru) l
2_k] sy kjl Jula o = ou & dus k ~k k “k (6.16)

t The suggestion that Hermite polynomials should be used for the expansion has also
been made by Hopf (1962). I am grateful to Dr Kraichnan for this reference.
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If the right-hand side of each equation is now rearranged in terms of the
Hermite functions, one has then to solve equations of the type

HE = SOl T Ho_ Fo (6.17)
which have the immediate solution
E = [E]Ofn] (%nkwk) H nEN_ kF (6'18)
n

To complete the specification of the expansion one wishes to give correctly the
mean value of «fu? , from F, alone, so that

f(F]+F2+ ugu?  duy = 0. (6.19)
Proceeding now to calculate F;,
HEH= 3 Mﬁ{{yuﬂuyuﬁqglAE). (6.20)
kjl; afy

The right-hand side contains H; H, H,, so that

F= 3 Mgrwulul Agg 1 Fy(o+ o+ o)™, (6.21)
afy; kil

or in continuous variables

fos ! fd3kd3j(2i)'1(k59§7+k79ﬁﬂ)uak‘u§9ulk~i' (6.22)

afBy (277) W+ W+ g

The expression for F, is much more involved,

HAFy= ¥ Mgrulu] =

(0 + 0y + o) MELY v uf ul Mgt F,
kil; «fy U wa'fy K5V

3

—Rk) H1k1~kQE2A- (6.23)
9x

The resolution of the right-hand side into Hermite polynomials is straightforward
but tedious and leads ultimately to the form

F= 3 MM (op+op+op)™ g0 g0 O
all indices
all vectors + > (S gk —Ry) Hlk 1T PA(wgtow_g)™,  (6.24)
a,f
where, writing
H, for Hy, ., @’ for P¢qy, &y for sio
and wg = Wyt wj+ o+ op+oy+op (k... 1 all different),
Wy =wytwy+o,+wg (a,b,c,dalldifferent, selected appropriately from k...7'),
Wy o = (W +w_ )+ (W +wg+w,+wy), (a,c,d, e, fall different as before),

Wy = Wy + W_,, etc.,
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OFE™ = 2uf ul HY* u iy Oy y 03}

+4H7 g H{™ 8y oy Oy 0 s+ 4HY HYY H{* 8, 8y w3} o
+4qfVHY* HE* 8y 65 pwi b+ uf uf HE uf ulf 8 y o5 3
+2¢f7 HYY Hy™ O 0 _jwq 3+ 2HP g7 HE™ 0y 85y 033
+2HF HYY HE% 8 0y _jw3 3 o +uf ud uf ul ul uf wg?
+ duf uZul u qfF Oy g Y+ duf u ud wp HE 8 swih
+ 2w} ufuf wl HP 8y jwps+ 2uf uf wl ufl qf* 8y gt

+2¢07 gt HY 8y O3t + 497 @7 HY* 8,50 qw L. (6.25)

Itisimplied in the summations that all the  are different, Fourier components,
all products of the same component having been resolved into the polynomials.
Now of all these terms only the last contributes to (6.19), and Sy and R, are
therefore chosen to make this vanish for each k. By comparing the coefficients
of g, one sees that S, and R, are precisely those of the previous section. The
remaining terms will give the values of

Cufufuyuly and  (ufulud ud ugul)
to this order of approximation. It is to be noted that the four-u correlation can-
not be factorized into two (uu) correlations, and the six % cannot be factorized
into Z{uwu X uuuuy.

Now in view of the complexity of F, it might be supposed that the higher
approximations become unbearably complicated. This, however, is not the case
when one passes to the infinitely large volume and a general procedure for
writing down the nth term of the series is given in Appendix 4. At each stage
new terms appear which give corrections to S and R in order that (6.19) be
fulfilled. Some general results can be stated about this series: (i) The number of
positive terms to any order equals the number of negative terms. (ii) The nth
term of 8 can be written symbolically as

f[M]Zn [q]n+1 [2&)] —2n+1 (dSk)n
and the nth term in R as
[t gy ot @by
For example, the expressions (5.16) and (5.21), and typical terms of the next order

which are (Appendix 4)
EfMﬁﬁ"y M'y’&’e Mﬁ’e’v' M&val; qp erqrn 9;5‘,6” ggf’ Qljy'y’@;e’@w'

jpm ipn mok 1p 4 =7 o 3] d3p Bmd3n
(g + Wy + W) (W + Oy + 0+ @) (Vg + 0+ ;)

pm ipn mn YA Bpddmdin

and EJ‘MokL]ﬁl'y M:};'g'g Mﬂje'v' M&Val;’ qp 0 glﬁ/}: gz;;,@;y.},l ng)ergw,
(W + Wy + O (Wg + Oy + O+ ©) (W + oy + )

for § and R, respectively. In the symbolic notation these are
f [M]*[q] [Xw]®[d*k]* and f [M] [g]? [Sw] 2 [dk]2,

the M containing é-functions which remove three integrations.
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This completes the discussion of the steady distribution, and in the next
section the time-dependent case is discussed.

7. The general expansion in the generalized phase space

To resolve the time-dependent case the same method as that of §6 will be em-
ployed. There is no point now in averaging out the random input force before-
hand, so the expansion will be made in % as well as M, they being considered
of the same order in as much as both are approximately random as was implicit
in §6. At this stage it is worth noting that there is no need for # to have the
Gaussian distribution of (2.17) and independent values can be given for say
(FFFF). These will however affect only the corrections to & and # being
corrections to the basic assumption of randomness. The equation

0

fdko 2 P {(ikg+ VKD ui— > M k,luﬂuQ’ — Zgﬁﬂﬁﬁ} P=0 (3.5)
k,a Y% f.aly

will be rearranged as

0
dk, Z { o (Z Qk (Adko)‘le+Qku7€)— S M lu”ul %%

Bysit

?
—zgaﬂy‘kaa —-a~(%‘,Mgiﬂ(Adko)‘le+%ku%)=P=0, (7.1)

oug
where Qp = R+ vk +ik,. (7.2)
The quantities <, #,,, Qy, D, will appear analogues of Sy, By, vy, dy. Expanding
as before P=P+P+P+.., (7.3)

it will now be required that
[u;';u‘?_k(P1+P2+...>Hdu=0, (7.4)

where the averaging is over the distribution of the force % which will still be
given by (2.17) and (2.20). The analysis goes through exactly as before, for
example,

Mk,, uff g uf ug 2t 5 D Fiul 25t

P ==
! kil; afy QIc"‘Q"'Q kia, f Qk

(7.5)

so that only the results will be quoted. Since it is still true that the mean rate

of input of energy is given by (FF> = by

one may define S = D, — Iy Q. (7.6)

Then if Adkyluiu? ) = 2, D (7.7)
Ly 2;2,d% dj,d3ldl

— 0 - y
%, = | GG I k), (7.8)
R, f

. {{m 2;d3djd3ldly 6(ky+ o +1o)
Q +Q;+ Q
a:nd Qk == Dk/Qk’ (7.10)

(7.9)
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There is one great simplification to be noted in these equations. Since

ko+jo+l =10 (7.11)
it follows that =~ €, + Q;+ Q = Z;.+ R; + X, +vKk2 +vj? + 12 (7.12)
If one introduces @,, by the definition
2 = QT (7.13)
then from the definitions of 2 and ¢ it follows that
kadkO = 1. (7.14)

If one now tries #;, = R, as a solution of (7.9) it does indeed satisfy it. But E, can
be taken as known since the equations for it are independent of & and @,. It
follows that one can now write a closed equation for @, '

. L4019, @—r—; 4o &% d°1
thy+ V) Q) + Ry (L2, q) 7+ f il AT Yok OIS T — (7.15)
( 0 ) k hk( qu) Qk(wk+w]+wl)
in which gy, wy, Qy, Ly all have the same meaning as before. This can usefully
be written in time-dependent form by Fourier transformation

0 h e
(§t + “’k) Q) = gfe““"“ +fd33 26, k) @;(t) @_x (1), (7.16)
where Qu(t) = %T f QpePotdle, (7.17)

and { is the kernel of the integral in (7.15).

The extension to higher approximation goes through exactly as before and in
the time-dependent form the remark (i) still holds, as of course does remark (ii)
when d*kdk, replaces dk.

An expansion has now been obtained in the time-independent and time-
dependent cases for the distribution function. By analogy with other branches
of theoretical physics it may be termed the generalized random-phase approxi-
mation. To understand its implications one needs to solve the equations in as
many cases as one can, and it will turn out that it is possible to make considerable
progress in spite of the complexity of the equations.

It is important to emphasize that the expansion developed here is quite
different from those obtained by truncating the infinite set of equations got by
taking moments of the Navier—Stokes equations, which have a structure similar
to the equations developed in quantum-field theory. These approaches in
effect try tomake By, %, do the work of both (S}, %), (Ey, #;) and the form of the
solution suggested can be got from the forms above by taking, in say the time-

independent case, e = (hy+8,)/ (k21 Ry)
and dividing the numerator into the denominator
G = hy(VK? + By )71 (1 4 Sy/hy) ™
=~ by (VK2 + By —vk2S, k)
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Now expand the integral for Ry
Rk = leik q](ﬂ)k + (l)j + (1)])_1 d3] d3l

jand fL]jk qj(ﬂ)] + (1)1)_1 d3] a3l — a)kaHk q](ﬂ)J + (1)1)_2 dsj dsl.

If one now writes @ = hp(VK2+Zp)1

and puts further w, = vk?+ X%, then
2 1 3543 -
G = | VK2t | Lg% )

which is a form often studied, and typical of the kind of expression obtained by
manipulating the Navier-Stokes equations directly. There is no underlying
physical plausibility for this form, however, and though rather complicated
mathematical manoeuvres have been performed above, they follow as closely
as possible the intuitive models of earlier sections. The relation of the equations
derived here with the work of Kolmogoroff and Kraichnan will be discussed
at the end of the next section.

8. Properties and solutions of the equations

Before attempting to solve the equations derived in §§6 and 7 one must verify
that the expansion of P is in accord with the original Navier—Stokes equations
from which the whole analysis stemmed. To see that this is the case multiply
the original Navier—Stokes equation (2.8) taken at the time ¢, by Uj at the time
t', and average. This gives

0 g o
55 CU(8) UF () + v U (0) U (1))
— 2 M U UY0 UL () + SOYF LM VL) = 0, (8:1)
2V

or in the four-dimensional Fourier transform

D (ikg—vK2) 2, — ST (AL U+ T MipUjUr U =0.  (8.2)
A B,viisl

Using the expansion for P, the two terms on the right are evaluated from P,
(7.5), and give &,/Q, and %, — R, 2, respectively, so that the original equation
implies that

(iko—vkz),@k-k%-k(-%g—}zk,@k) =0 (8.3)

which is indeed (7.15).
A similar result applies to the time-independent case and there represents a
discussion of the flow of energy. The total energy is

&= %fU,’;‘ U= d%k; (8.4)

1 Fluid Mech. 18
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hence, at any time, the ratio of change of energy is given by

aa—(f :f k2q, d*k +fhkd3k -I-fd%dsjdsl( 3 Mﬁjlyufuiyuﬁ>- (8.5)
apfy

Now the term in M vanishes by symmetry, but it can also be written from F; and
gives

[t~ Bego. (8.6)
But the definitions of S and R ensure that this expression vanishes for
f kS, = f L gay gs; gs, (8.7)
Wy + (.l)j uy
Lyaq:q .
3 — lik1j1k 131, 737 18
fd k Ry q, fwk+wj+w,d ked®jdel. (8.8)

It follows that the total external input and output balance and also the total
internal input and output, as indeed must be the case since no work is done by the
inertial terms. Whereas S and Rgq being rates at which energy is absorbed or
emitted are familiar concepts, the conservation properties are also true of &
and R2 which refer to action.

Turning now to the solution of the equations, the simplest case is clearly that
of §6, so one may ask whether there are any conditions, however remote from
physical attainability, under which an exact solution can be obtained. It is a
property of M that, bearing in mind that divu = 0, one may rewrite

My gy
afy;kit  Wx Tt

in the form 1 > M wwyui(rt—gY). (8.10)
afy; kil

, (8.9)

It follows that if ¢, is a constant, not only F;, but all higher terms vanish identi-
cally, and it is clear from their definitions that in this case

Sy = Byqy. (8.11)
From this and equation (5.4) one has
by = VK2, (8.12)
so that constant g, will be a solution if A, is taken to be
Py = R([K| k1 1)?, (8.13)
q = k52, (8.14)

If % and v both tend to zero, their ratiois arbitrary and one can write ¢ = (2«T')~1,
since this is the case of thermal equilibrium, but in general ¢ is well defined. For
constant ¢ the actual integrals for S and R are divergent which is scarcely sur-
prising with an input rising like k2. But there still stems from this analysis the
useful comment made earlier that in the corrections to S and R the number of
positive terms to any order equals the number of negative terms, for it is only
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by this means that every order vanishes when ¢ is constant (both ¢, w are of
course positive definite).

To consider more realistic cases one can simplify the equations by assuming
that the input is more concentrated near small & so that the viscosity can be
ignored in the first approximation. This is equivalent to the statement that the
Reynolds number of the turbulence may be considered infinite. Of course one
cannot balance input and output in the absence of viscosity, but this point can
be resolved as will be shown. The simplest input is a power and it is possible to
solve this case in the limit of infinite Reynolds number. So consider

hy = h(|K| ki *)~=, (8.15)

in which case the equation for £, contains no dimensional parameters, and there-
fore g, R, must be powers, and therefore also S;. Define ¢, R by the equations

% = q|k|™, (8.16)
Ry = Rk|™ (8.17)
Then from (5.21)
RIk|" = qR|d3d% | j| =™ Lygy(| K|™ + [§]™+ [1]™) L (8.18)
Writing i = (K] (1] = ] = ] (K]
and using the explicit form of L(~ |j|2), one finds
R2|k|" = g|k[3-mn42, (8.19)
where 42is a numerical constant, independent of k. Therefore
R=AJq (8.20)
and 5 = 2n+m. (8.21)
In the same way from (5.16),
S, = 2Rk |[5-2m—n, (8.22)
From the definition of g, one now has
glk|™™ — {h(|K|k1?)== + 2Rk [|5-2mn} R k|, (8.23)
and it follows that 5—2m-n=—a, (8.24)
—m+n = —a, (8.25)
ie. n = $(B—a), (8.26)
m = 4(5+ 2a) (8.27)
and that JA gt = hkf +¢?BA-E, (8.28)
ie. q = h3(At — BA-Y-3 i, (8.29)

This result is not restricted to the approximations to S, and R, of equations (5.16)

and (5.19) but is true to all orders, as is seen by considering the symbolic expres-

sions for the higher terms quoted in §6. The effect of the higher terms is to alter
17-2
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the coefficients which occur. It follows that there exist constants «,, p,, o,
such that the solution is given exactly by

@y = K, B3k e |k|362),
Ry = p,hife|k|d6-o), (5.30
Sy = o, kky | k|*.
(In the literature it is customary to use the distribution per unit ]kl, ie.
E(|K|)dk = g, 0%k
so the above result gives E(|k|) oc h3p—tea—D)

A particular case is that of white noise @ = 0 (white that is with respect to wave-
length; the definition of ky has already assumed whiteness with respect to fre-

quency), for which ¢ = kh3|K|-3,
Ry = phi|k|}, (8.31)
Sk = O-h.

The validity of these solutions depends on the integrals A and B, and the integrals
appearing in higher approximations, all converging. It is R, which is the critical
function for if it exists it is easily confirmed that S, and all the higher functions
also exist. For small |j| L~ |K?

so that the By integral goes like
fdj mz ljl%@a—s), (8.32)

which implies that @ < 2. For large j, L contains terms like k. j and k2 but allow-
ing for the angular integration both give the expression

f [§]2dj [§|~¥6-ar-bE+2a, (8.33)

implying that & > — 1. The solution then is valid for
2>a>~—1. (8.34)

For a < —1, a solution cannot be obtained without invoking the viscosity which
then affects the solution for all |k|, as in the first example of this discussion. For
a > 2 the precise nature of the input at small |k| can be expected to affect the
entire solution, and the input itself will of course be modified at small |k| in
order that the total input be finite. This case will be discussed further shortly.

One has then a picture of energy entering the kth component of the system at
a rate Ah(|k|/k,)~*, gradually being transported to higher and higher |k| till
finally the viscosity can no longer be ignored, with the result that ¢, falls away
very much faster. Finally, a region is reached in which R, is negligible and only
external input and output matter giving

R[] /ky) = /v[Kk]|2. (8.35)
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The apparent paradox that one may investigate the small |k| region by dropping
the viscosity, even though the latter is required for overall energy balance, is
resolved by observing that in the absence of viscosity the integrals over Sy and
Ry do not converge. Large |k| values act as an infinite capacity well for energy,
and the formal identity of the integrals over |k| of S, and R, is not meaningful.
The inclusion of the viscosity restores the precision of the identity.

There is in the model of turbulence with source k(|k|/k,)~*, a localization of
influence of one |k| value upon another. Thus if one takes a region & of k space
near to k, say and asks how much this region contributes to 8, the answer is an
amount which tends to zero as k, +k, increases. To be precise

dSy, ~ (ky+k2)? @, x, B, Py 31,0

which tends to zero as k; + k, tends to infinity. A similar statement holds for
R,; both remarks are essentially contained in the statements that the integrals
over all | k| space for S, and R, converge. Consequently one can regard the situa-
tion as a cascade of energy from small k| to larger |k|, supplemented by an
external input which, per component, decreases as |k| increases. Finally, for
large k viscosity comes in and kills the flow of energy. Of course it is clear from
the definitions of By and S, that energy flows in and out of all components to all
components, of larger and smaller k; but on an average it flows from small to
large k, the imbalance being taken up by the input.

The above model is still not satisfactory, however, since though the input
per component decreases, the input per unit wave-number does not, the latter
incorporating a weight factor |k|? from [k|2dk, which overcomes the |k|—=.
A physically realistic model will decrease much faster than a power and one should
expect A, to be zero for |k| > K, say. (This remark need not apply in magneto-
hydrodynamic turbulence where white noise from electromagnetic sources is
quite feasible and the previous model therefore significant.) Consider then such

an input, by =0, |k|> K,. (8.36)
Integrate the equation hy = Byq — Sk
up to a value K, where K > K,. If one introduces

H =f°°h,kd3k (8.37)
0

K,
= f hy 4%k, (8.38)

Ly 059 — Lo 4 1
then H fd%; d3lf}k|<1{{ ! 1:+R +1“Rl’ }d3k (8.39)
Since L contains a term &(k +j + 1) one may write
Ly, = Ago(k+j+1), (8.40)
and so, by writing k +j for —k in the second term obtain
H = ( d3j { f DG @k f Mg @% )
w<x Byt B+ By  Jurji<xBe+Bj+EB_

- f iy f AR+ B+ By ) &L, (8.41)
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where 2 is the region between the two spheres [k| = K, |k+j| = K. Now suppose
tentatively that the solution to this problem is again a power law, with

%= q|K|™", By = Rlk|™. (8.42)
Then writing |k| = K|Kk'| and |j| = K|j’| one sees that
H = K8 2m—nyq?R-1, (8.43)
where y is the value of the integral, a dimensionless constant. But # is a constant,
independent of K, so one has 8 = 2m+n, (8.44)
which when combined with the equation for Ry, i.e. with (8.21), gives
m = L1,
} (8.45)
n =%,
This means that @ = K| (x/4)5, (8.46)

or in terms of the distribution per unit wave-number
E(|k|)dk = 4mqy | k|2 dk
= 4m(x/ A} A#3|k| 3 dk, (8.47)

the Kolmogoroff spectrum (see, for example, Batchelor 1959). Unfortunately
the problem cannot be resolved so simply for the dimensional arguments only
apply if all the integrals converge, and they do not. The relation between g, and
Ry is still (5.19) and still only converges if f li|2q;dj exists for small |j|. This is
clearly not the case for a |j|~*" dependence. Now of course at small |j| one will
expect ¢; to depart from [j|—% and directly show the structure of the input.
But the fact that one cannot still use |j|~%" near |j| ~ 0 in the integrals implies
that the effect of the deviation will make itself felt everywhere and hence the
structure of the input will be noticed everywhere. Unlike the power input model,
this case does not form a simple cascade. To investigate what happens more fully,
examine the equation for R, in detail

B, = %(2#)‘6f{(k +§)2[1 ~ 2 cos® 0y cos? B+ cos by cos O, cos O]

—(k%+j2+K.j) [cos? Oy, — cos? 0]} (k+j +1)
X q(Ry+ Ry+R_ ;) d%d?l (8.48)
= §(2m)~® f [K2(1 —cos?0y;) + Pyl g5( By + By + R_y ) &%, (8.49)

where p,; tends to zero with |j|. Suppose that for |j| < J the value of ¢; directly
mirrors the input, and remove this region from the integral. Near j = 0, R,

is small so one may write Ry+R,+R_, ,~ 2R, (8.50)
.. k2 k%(1 —cos O,;) + pi .
n R, = i&f—i-f ki M g,d3j.
giving TR T es RrR AR, %Y

If again Ry and g, are taken tentatively to be powers, the integral as before can
be transformed into

K |° [(1—00829;‘,,-)+p1§[k]*2] lj|~md?
Ry f.l/lkl<[j] L+|i|7+ (1 +§)| . (8.51)
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This integral will not be independent of k unless it converges as J — 0. This is
the case for the part depending upon p,; but not for the first term which again
gives a contribution like k2R 1. So altogether one may write

Ry ~ BRI+ G (K(S g Ry L. (8.52)

This now contradicts the original assumption of a pure power law since it suggests
that R lies between R, o< [K| (8.53)

and R, o k|t (8.54)
Assuming the former, since 8 = 2m +n, one has
g o |k|%, Ry oc |K]. (8.55)

This law has been obtained by Kraichnan in the paper mentioned earlier.
Kraichnan gives a discussion of the experimental situation in this paper. If one
adopts the other extreme, one obtains the Kolmogoroff result
¢ oc [k|75

Presumably the complete solution will lie between these two extremes which
are in fact very close to one another. These remarks again apply to all higher
order terms which have the effect of modifying the coefficients % and %. The
Kolmogoroff hypothesis in the present eontext is that the coefficient & is
negligible compared to %, but there seems no reason in the present analysis for
this to be the case. The surprising point is that if one makes the exact opposite
of the Kolmogoroff assumption: that the energy input into a component of large
k is directly dependent on the behaviour of the system in the external input
region, i.e. # > %, one only changes the |k| dependence of ¢, from |k|=% to
[k|-%".

There now remains the time dependence to be investigated and this will be
done in the next section.

9. The time correlation of the velocity correlation functions
The basic equation (ikeg — ) 25, = (iky— ) by +F, (9.1)

may be integrated over all &, and in order that it will reproduce the equations of
§6 one must have

fkoﬁkdko =0, (9.2)
. 09 (t) B .
l.e. B o 0. (9.3)
In time-dependent form one has then to solve
0
(& ""Uk) Qu(t) g = e~ X! + S (D), (9.4)

with the boundary conditions Q,(0) = 1,}
Qu(B)];=0 = 0,
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which will assure that £(0) = 8,, (9.6)

and 8o w, gy = P +Sy. The time dependence of ¥, is highly involved since it has
a highly convoluted structure. If one tentatively associated a time dependence
of exp (— wyt) with @, (t) then F would behave as an average over

expl{ — (o +w_ ;) ¢t
In different regions of k space (w, +w_y ;)" will be larger or smaller than w, .
In particular, if w, is a power, (wy +_y ;)" will be a maximum for j = }k. Though
it is now clear that @, cannot have a simple exponential decay one can still

argue that & will consist of some part decaying slower than ¢, and some part
faster, so a crude assessment of the situation will be to write

S =W+, (9.7)

where W, decays faster than ¢, V; slower. For short times, the system moves
slowly because 2 = 0 at ¢ = 0. This means that initially

D = @~ Pul? (9.8)
ie. Py = qexp( —et?). {9.9)

After a while W will become small, ¥, will still be slowly varying,so the behaviour
at intermediate times will follow the solution of

d
(8—15 + a)k) Dy (t) = wy 8(2) + Vi (P), (9.10)

ie. 9, (8) = py(t) e~xl, (9.11)

where p,(£) is some slowly varying function. Finally, at very long times only the
most slowly varying components remain, and following the suggestion above a
crude model will be to consider T = v, "Qik (9.12)

and since 9, is small, therefore ~ w, 2, = 0, - (9.13)

This equation has the solution (v, /wy) -7 where 7y is an arbitrary constant chosen
to fit on to the intermediate solution. It is very crude of course to assume that all
2; decaying more slowly than 2, do so at the minimum rate, but a more elaborate
argument allowing for the variation of .2; leads to a time dependence

(log ) t-7%

which is not very different on a logarithmic scale. These arguments can again
be applied to higher terms in the expansion and rather surprisingly still go
through. For example, one finds corrections to (9.13) of the type 23, and so on,
which again leads to the final power law, so the general picture of an initial Gaus-
sian form (9.9), followed by a main exponential region (9.11) characterized by
wy, then finally a power law tail is independent of the order of the approximation.
There is some correlation between any one %, and any other u;, and between
any u, and the input. For very long times in the behaviour of every u; will be
found the residue of the behaviour of the most slowly varying parts of the system,
either of those ; for j ~ 0, or of the input should there be slowly varying com-
ponents in it (which have not been considered here).
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10. The accuracy of the expansion

In much of the work of §§8 and 9 it has been possible to state that the higher
terms of the expansion do not alter the functional form of the solution but only
the constants which appear. There still remains the question of how well these
constants are represented by the simplest approximations to 8§ and R. In the
case of an input &(|k|/k,)~* it has been shown that the solution can be written in
terms of the two constants p,, o, of (8.30), the coefficients of turbulent viscosity
and turbulent diffusion. The series for S, and R, thusreduce to a pair of equations

of the type o, =Wa,,p)+0c,p)+ ..,

Pa = PC o Po) +PP (04, po) + ...

There is no functional problem remaining and in principle the solution of these
equations can be found numerically. But the integrals involved are considerably
more complicated than say the radiative corrections to the Lamb shift which are
the most difficult integrals of this type to have been performed, to the author’s
knowledge. So the best that can be offered at this stage is a discussion of the
features of these integrals which will lead one to suppose them to be small. As
has been noted, whereas S, and R, in the first approximation are both given by
single positive integrals, the higher approximations are mixtures of positive and
negative terms, as many positive as negative in both § and R. This fact is con-
nected with the existence of the exactly soluble model (8.13), and since the inte-
grations are heavily entwined in all the higher terms one may hope that the posi-
tive and negative integrals will approximately cancel. It is possible to go a little
further with the power input model if the integrations of say fourth-order terms
are performed approximately by altering the denomination in such a way that the
resulting integrals are products of those for § and E. This can be done without
spoiling the feature of equal positive and negative terms, and then one finds
that the correction to ¢, due to the fourth-order terms is of order

(Sg ~— Ry qy)?/ By gy,

ie. Qe = de B '+ O(S, — Ry qy)* B Yt (10.1)
Ay In\®
_E[Ho(d—k)]. (10.2)

{The precise statement of the approximation is given in Appendix 4 with the
discussion of higher order terms.) The expansion in this approximation is then
in the ratio of the external input squared to the internal input squared, and the
accuracy of the expansion is measured by the smallness of the external input
required to keep the system steady. This argument is of course limited to the
power input case and does not mean that if 2, = 0 anywhere the method is exact
in that region of k space.

Since these purely mathematical arguments are not very convincing it is
worth considering the situation from the physical point of view and asking
what phenomena are considered small by stopping at the first approximations
for S, and R,. The distribution function

F=F+F+F+..
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predicts the correlation of three velocities
aa’ Oyfp’ . a'fy’
OOy = by 5 DDA 0 MTA

a’By’ Wy +w;+ o,
and permutations

. (10.3)

but it also predicts correlations of four and six velocities which cannot be ex-
pressed as simple factors

(UeUEUY Uy = (terms which vanish if all k, j, 1, m are unequal)
+ X MEEY MELY D DE DY DY DI AR

permutations
X 3 %5 01 O+ O O Sasier Ot v
X (W + Wpr + 0p) 7L (0 + 0y + Op + o) 7T
+ , Zﬂ MEEY MLy 92 D86 77 D" D8 A?
a’Byat By

KK
permutations

X 919 90 O +ic O Oyt S G
X ((l)k" + (l)j' + (l)l”)—l ((1)1» + Wy + (l)i'r + (l)ln)-l, (10.4)

(UzU¢ Uy U5, UL Uky = (terms which vanish if k... p are not all unequal)

permutations
X 459190 95 O-+ic O+ 0111 Om i On 7 i1
X (Wyr + 0 + wp) "H o + 0y + op + 0p + 0 +op)
(10.5)

To ignore F;, Fy, ete., is to assume that the five U correlation can be expressed in
terms of the three and the two, and the eight U correlation can be expressed in
terms of the six and the two, and the extent to which they are not is a measure of
the inaccuracy of the theory. This is rather a remote physical effect. A much
simpler one is to consider the probability that the velocity at a point x is U.
This is given by
S =J.8(u(x) —-U)Flldu (10.6)

and will be independent of x in the homogeneous case. Clearly if the expansion
for F is used it develops fin a series of Hermite polynomials

f Fou(x)— U)du = f, Y a\wH, (U). (10.7)

The basic Gaussian f; is chosen so that H, never appears. Working to second order,
since by symmetry a{™ is zero, one has fourth- and sixth-order polynomials alone

f=Ffotte
fo = fo(1+aH,+bHy). (10.8)

The residual terms in F, are the cause of the subsequent terms of the expansion,
50 one may now say that the expansion should be good if f is a Gaussian with
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small additional terms in H,, H; and no further corrections such as the H,,
H,,, H,, which arise from F,. A more detailed analysis shows that the effect
of the F, corrections is to make the Glaussian rather more peaked at the origin.

More elaborate correlation functions such as the joint probability of finding
U, at X, while U, at X, can be defined

fUL X, Uy X) = f Su(X,) —Uy) du(Xy) — Uy Flldu,  (10.9)

and discussed in a similar fashion.

Similar arguments can be applied to the time-dependent case. It will be
noted that ¢, B, and k. form a soluble set of functions without discussing time
dependence so that if they could be obtained from experiment, the equation
(7.16) governing time dependence could be viewed as one for @, alone with
Q> By, by put in as externally defined functions.

11. Conclusions

Many problems in theoretical physics can be expressed in terms of functional
differential equations, but turbulence is an exceptional problem in that there is
in the limit of large Reynolds number no external parameter which can be used
as a basis of an expansion technique. In the language of quantum field theory
it is a problem of infinitely strong coupling constant. It follows that an expansion
must be based on the internal properties of the system and with one’s present
limited knowledge of non-trivial mathematical operations in Hilbert space
the only substantial fact is that since the probability of finding a particular
velocity at a particular point in a fluid is quite close to a Gaussian (Batchelor
1959, ch. 8), the system is substantially random and the generalized random
phase approximation should be applicable. This method appears to be the
simplest which stems directly from Liouville’s equation or the generalized
phase space equation, and is entirely consistent to any order in the sense that it
contains no features which contradict the original equations from which it
was derived. The situations discussed in this paper are all highly idealized, being,
it is believed, as simple as can be whilst still containing the mathematical
essence of the problem. For this reason no detailed comparisons with experi-
ments are offered, though it is hoped that the method of attack will prove a
sound basis for the discussion of real situations and further calculations to this
end are in hand.

The author would like to thank Dr Batchelor for a helpful discussion which
led to an expansion of §8, Dr Kraichnan for a correspondence which eliminated
several errors from the first draft, and caused the author to invent the work of
§3. The first draft was an account of lectures given by the author at the Culham
Laboratory in 1961, and the author is grateful for the opportunity to visit the
laboratory on that and many other occasions and for many discussions there,
particularly with Prof. W.B. Thompson. He would like also to thank Prof.
Flowers for many helpful discussions concerning the problems of turbulence and
the writing of this paper.
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Appendix 1

The equation of motion U+JU = F(t) (A1.1)

can be solved directly with the boundary condition U(t') = %', giving
U=uexp[-J({t—1)] +f:exp [—J(E—T)]F(1)dr. (A1.2)
The Green function for the motion is then
G = 8(u—u’ exp[—J(t—1t)] —f:,exp [—J(E—T)]F (1)dT @(t-—t')) . (AL3)

It follows that the mean Green function is given by

1 (¢t
(G = /Vf&ﬂ'exp [_Ef f F(r)g! (T—T’).?f-('r’)dfrdfr’] G. (Al.4)
vJv
Write @ parametrically by using the integral representation of the é function

© [

G = (2m)! @f dAexpid (u—u’ exp [—J(t—-t')]——f exp[—-J({t—1)]F (1) dT) .
—o t

(A 1.5)

By substituting in (2.17) the integration over # is performed by completing
the square, i.e. by changing variables to

F(1) = ?(T)—i/\ftg(T—'r’)exp [—JEt—1)]dr' ®F—T1)O(T—t"), (A1.6)
y
which leaves

(G =(2m)10O ’ dAexp {i/\(u—u’ exp[—J(t—t)])

— Azftftexp [=J@—1)=J@E—T)]g(r—7")drdT"}.
vJv

(A 1.7)
This is finally evaluated by again completing the square to give

(@ = (I|m¥exp[—(u—u'e7E0)2[I(¢,¢)] (A 1.8)

¢t
where I(t,t") = %f f exp[—J(t~1)—J (@ —7,)]g(1, —T5) dT{ dT3. (A1.9)
vJr
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Appendix 2
If the non-linear term is added one may still write the solution of

U _ —vReUE+ 3 M ULUY + S FLD (A2.1)
ot priil ;

as U = uf'exp[—vk2(t—1¢)] +ftexp [—vKR:(t—7){(MUU),+(¥2),},
t, N

and proceeding as before eventually obtain
t 2
(G =TI (Iy/m)exp [- A (uﬁ 4 e*”kz(""’+f (MUU)z g—vE2-7) d‘r) J, (A2.2)
k k t
with the condition divu = 0.

This of course is of no use as it stands since the unknown interaction term
remains, but upon explicitly differentiating (¢}, as in (4.13) above, the inter-
action term only appears at the time ¢, when U is just u, so one still has the simple
form

0 0 af A—1 0 2y, «By ub
(§+ Eka—d% (%91; A Py +vk uk_j];%yM_kjluj uf)) (G
=0(t—t') 1 0(ux—u) (A23)
and the similar equation for (#7). k

Appendix 3
One needs to evaluate the expression
My MG (D8P 27 + 277 217 (A3.1)
to obtain the coefficient in the integral for S.
Now Sg* must have the structure Z§*'S, so to simplify the analysis since
S G = (A3.2)
one may write the coefficient as .
(2m) 8 L (REDLY + kY DEF) (WD + 0" D0 ) (D DY + 27 DY) (A3.3)
In a compressed notation this is
(2m) ¢ H{2(kD; k) (2, D)) + 2(kD,K) (D ;) + 2(kD; Dy D\ Kk) + 2(kD, D D;k)}
= (2m)7® }k2{(1 — cos? Oy;) (1 + cos? Oyy) + (1 — cos? Oy;) (1 4 cos?b;,)
+ 2 c0s 0,,; cos 0, (cos 6 — cos ; cos 0,,)}
= (2m)~% 1k2{1 — 2 cos? 0, c0s? 0, + cos O, cos 0y, cos 0} (A3.4)
Similarly for R one has the expression
;\: S MY (M i+ MEYS_ ) (DIF 77 + 207 D) (A3.5)
Py
which whenswritten out becomes
(2m) 8 H{(k2,2;2,1) + (k1 2,D;1) + (KD 2,2 )) + (KD]) (2, D)} (A 3.6)
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This can be written in terms of a symmetric part under the interchange of
k and j
(2m) "8 H{(K DD D) + (KD, D, ;1) + (KD, 2,2, 1) + (k2D;1) (2, D))
+(i219:Z;1) + (19,2;2,1) + (i 2eD2;1) + (%)) (2;2y)} (A 3.7)
and an antisymmetric part
(2m) S HAD;)) + 2(k 2,2, D, 1) — 12 )) (2D) — 2(i 2,2 Z;1)}. (A 3.8)
The symmetric part is just the coefficient in § with 1 and k interchanged, whilst
the antisymmetric part gives
(2m)=8 {12 [cos? Oy — cos? 0] — (K. j) [cos? Oy — cos? ]}, (A3.9)
In all then, since one may leave the antisymmetric part in Ly; for convenience
in writing, one has
Lyy = §[(1 — 2 cos?by; cos? O3y + cos 0, cos 0 cos Oyy) k2 — (k®—1.j) cos? 6,1
(A 3.10)

Appendix 4

The series is obtained by successively solving equations of the type

0
z—~(29“ﬁA1 dk+wkuk)F —— S MufuyoR,,. o

a; kOl afy; kil
0
— ka——uﬁ(zgﬂ‘/’A 1——- k+Rkuk)F
(A4.1)

To obtain a picture of the right-hand side one must invent a graphical notation
(as in the virial cluster expansion of a gas or the Feynman diagrams) for alge-
braically it becomes very complicated. The diagrams however are quite different
from the examples mentioned and are constructed this way. For M write a dot,
for » a fullline, for 9/0u a dotted line. Then MZ4Y uf u} 0/ou®  is written

1
£’< (A4.2)

where the arrows give a vector sense so that

1+j+k =0,

T and T ®\ (A4.3, Ad.4)

It will be assumed that dotted lines will always be drawn to the left, whilst
full lines have arbitrary directions. Now to solve (A 4.1) one needs the right-
hand side in Hermite polynomials where upon the inverse of the right-hand
differential operator is (¥ new,)~t. It will turn out that these factors can be

k

Similarly one can define

easily inferred from the diagrams and need not appear explicitly. That being
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the case F, ., will consist of combinations of the diagrams (A 4.1, 2, 3) running
across the paper from right to left as they would in an algebraic expansion.
For example F, consists of

...... < < + T +®\ (A 4.5)

and F, of

+ ( O] T | (A 4.6)
and similar terms in R, and in S and R.
Now the definition of S and R is that
J‘(ﬁ’z“l"ﬁl"f‘...)uku_knd’u:o. (A 4:.7)

If one starts to perform the integrals it is clear that a 0/0u; must meet a w; to
its left or, by parts, the integral vanishes. In other words the dotted lines in the
diagrams either meet and annihilate a full line, or else meet one of the ‘external’
Uy, %_y of the integral (A 4.7), or else give zero. Clearly they all act to their left.
Now consider the remaining full lines. They also give zero unless they can pair
with another, i.e. a u; must find another %_; to be non-vanishing. (This amounts
to the same as replacing wu_;by H, and Hyj; ;). In order that a contribution be
made to A 4.7, it must follow that all the lines but two in the diagram must link
up, two full lines giving a g, a full and a dotted giving unity, or more precisely a
2 factor. The two emerging lines consist of the dotted line emerging from the
first subdiagram on the left, and then either a dotted line (i.e. S like) or a full
line (R like). Both emerging lines are labelled k. Itis possible for say uyu_ju;u_;
to appear, i.e. higher Hermite polynomials, but their contribution always turns
out to be of order A relative to the terms already noted and so the volume will
now be assumed so large that this possibility can be ignored. There now remains
the terms in (Znywy)t. It is clear that the n, are either zero or unity and they
can be characterized this way: the diagrams are well ordered from right to left.
So if a vertical line is drawn between each junction it will cut lines of the diagram
and for every cut of a line marked j an w; is added to the sum and such a factor
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{Lw)1lis inserted between each junction. Some examples should make this clear.
Consider working to order F,. The diagrams are

(A 4.8)

(A 4.9)

A vertical line gives the factor

in each of (A 4.8):

O <> =0, (A4.10)

""" ® 45 Ty =0, (A4.11)

where the two full lines in the ‘bubble’ in (A 4.10) give ¢;q__;, i.e. (5.16), and
in (A 4.11) the one full line gives ¢;, the mixed line 2, i.e. (5.19).

If one now goes to fourth order one gets many diagrams. Use the first approxi-
mation to § and R, i.e. (A4.10, 11), some sets of diagrams already completely
cancel, for example

(A4.12)

cancels exactly with
(A4.13)

Some partially cancel e.g.

(A4.14)
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kt+j

and (A 4.15)

These have the same M and ¢ factors but the (Zw) factors are different. For
the former, one has

(W jF+ 0+ o) oy, j+ o+ o5+ o) o5+ o+ o),
whilst for the latter, recalling the integral for R, one has
(W_y 5+ 05+ o) (o +w_j_ +w) w5+ oy + o),

differing by a single term in the central factor. (The topologically similar
terms in the perturbation expansion of electrodynamics do cancel exactly.)
Finally, there are terms which do not contain any subdiagram equivalent to a
lower order and are topologically irreducible. Such a term is

_______ PN (A4.16)

and with the residue of the partially cancelled terms, these terms give rise to
the corrections to R and S in this order. By counting lines and (Zw)~! factors,
the formal expressions quoted in §6 are now readily obtained.

The crude evaluation quoted in §10, is obtained by ignoring the partially
cancelled diagrams and assuming the value of the irreducible diagram can be
approximated by distorting them into cancelling diagrams, for example

Diagrams of the latter type are readily evaluated, the one shown being RE/w,.
Adding all the types up with due regard to sign one obtains the estimate quoted
in §10.

These diagrammatics can be extended to cover the case in which Z([#]) hasa
general distribution which is only approximately Gaussian, but since the
generalization is quite straightforward it will not be given.

18 Fluid Mech. 18





