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The steady distribution function for homogeneous turbulence is studied starting 
from Liouville’s equation, modified by the introduction of an instantaneously 
fluctuating external force, which acts as a random source of energy. A new 
technique for solving Liouville’s equation is presented giving a systematic de- 
velopment of the concepts of turbulent diffusion and turbulent viscosity. It 
amounts to a consistent generalization of the random phase approximation. 
When the rate of input of energy into the kth Fourier component ?hk has a power 
form hlkl-a, the functional form of the mean value ( ~ k u - ~ )  can be determined 
exactly in the limit of large Reynolds number; it  is AhBlk[-*(5+2a). Liouville’s 
equation proves an inadequate basis for the steady time-dependent mean 
(uk(t) uPk(t’)) and a more general equation is derived. The new equation can be 
solved in a similar way and shows that the time-dependent correlation starts 
like a Gaussian in time, then passes through an exponentially decaying state, 
then eventually has a power dependence [ t -  t‘(-ylkl. 

1. Introduction 
The problem of understanding the statistical dynamics of turbulence is a 

difficult one for many reasons. It is reasonable therefore to study the problem 
under the simplest non-trivial conditions and inquire whether if, under any 
physically possible conditions, solutions describing the statistical distribution of 
fluid velocities of a turbulent system can be obtained, even if by ‘physically 
possible ’ one may mean situations which, though conceivable, are not obtainable 
in a laboratory. In this paper the problem of steady homogeneous isotropic tur- 
bulence will be studied under such idealized conditions, allowing the exact form 
of the correlation functions to be determined, and thereby it is hoped to provide 
a foundation for the study of more realistic cases. The physical situation in an 
ideal turbulent fluid sounds quite straightforward. There is some mechanism 
by which the energy enters the system, say by the effect of a fluctuating force 
S(r , t ) .  This energy then spreads amongst all the degrees of freedom of the 
system via the non-linear equations of motion and is eventually lost through vis- 
cosity. If the mechanism of input is postulated to be statistically defined, then it 
follows automatically that the rest of the system is also only defined statistically, 
and the problem can be reduced to the solution of differential equations in terms 
of the (infinite) number of degrees of freedom of the system. A similar situation 
arises in the kinetic theory of gases, where the solution to every problem is a 
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solution of Liouville’s equation. But from Liouville’s equation there needs to 
be two further steps taken before a practical solution to any problem can be 
obtained: first, the Boltzmann or Fokker-Planck equation has to be derived, 
and then this equation has to be solved. Something of an analogous programme 
will be attempted in this paper but the actual procedures will eventually differ 
very considerably from those of conventional statistical dynamics since almost 
without exception the approximations employed in kinetic theory fail as do the 
methods presently employed in the quantum theory of many particles and the 
quantum theory of fields. Liouville’s equation, and its generalization when a 
random input of energy is present, turns out to be a useful starting point for the 
derivation of the steady distribution function of velocities, but it is inadequate 
for the study of the correlation functions when the velocities are taken at different 
points in time and a more general equation is derived to handle this problem. 
After an intuitive discussion of the problem a general method is given for solving 
both Liouville’s equation and the new extended equation. The solutions are then 
discussed in det&il and it is shown that for a certain class of input behaviours 
exact solutions can be given for the structure of the velocity correlation function. 
The paper concludes with a discussion of the validity of the method of solution. 

2. Liouville’s equation 
The simplest situation resulting in turbulence is for some random force to act 

on the fluid, the force being defined in the simplest possible statistical way. 
The simplest problem is to find the value of the velocity correlation functions of 
the steady homogeneous turbulence which accompanies the action of such a 
force, all velocities being measured a t  the same time. This problem is set up in this 
section by deriving a differential equation which will describe a fluid excited by 
a random force. 

Consider an incompressible fluid of unit density occupying a large volume L3. 
Let an external force 9(r ,  t )  act upon it so that the Navier-Stokes equations for 
the velocity are 

(2.1) 

and the incompressibility condition is 

v.u = 0. (2.2) 

It is convenient to consider the Fourier components of the velocity as variables, 
so writing 

&(t) = U(r, t )  eik.rd3r,  (2.3) s 
one has U(r, t )  = L-3 C. e--ik-r U kt t )> 

k 

where k runs over the values 2nL-l(n1, n2, n3), the n being integers. For an in- 
finite system this goes over into 

(2.5) U(r, t )  = ( 2 4 - 3  &(t) e-fk.rd31C. s 
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Cyclic boundary conditions have been adopted so that the (complex) variables 
uk and u - k  can be employed, they being more convenient than the real variables. 
It is useful to make the transition to the infinite system a t  will, so to this end 
define 

A = (2+)3 

so that AX+%. k 

Using (2.2) one may eliminate the pressure from (2.1) and obtain 

auk iA 
-- = - vk2Uk + 7 (( u k - j  . j ) uj - kk-'( k . uj) ( j . uk- j ) )  + c% - kk--2( k . F k ) ,  
at (2j.r) 1 

k .Uk = 0, 
or, writing in Cartesians, 

where 9 ; P  = &a1 - kak1/k2, (2.9) 

(2.10) 
iA and JfYzjl  = (271.)3 __ ( 6 a f l j Y  - kakljYk-') 6-k j 1 .  

The matrix M can be written in a more symmetric form with the aid of 

M&fY = A (ka9;Y + k'9gP) Skjl. (2.11) 
( 2 4 3  i 

The symbol 8kjl is unity when k +  j +1=  0 and zero otherwise. For an infinite 
system i t  goes over into a Dirac 6 function 

Skjl + A6(k + j + 1). (2.12) 

The mean velocity U, is zero, so that (2.8) represents a set of variables u k  

coupled non-linearly to one another by the term M ,  the non-linear term in the 
equation for U, not containing u k  itself. 

To obtain Liouville's equation one must introduce the function 
F( ..., uk, . .. ; t) 

which gives the probability that the u k  have the values uk at the time t. For any 
particular system this must be a 8 function for each uk 

(2.13) 

where Uk(t) is the solution of (2.8) for the particular system being considered. 
Differentiating with respect to time 

aF au a 
- = c. -k ~ Jj 6(Uj - Uj(t)). 
at k at auk (2.14) 

A straightforward manipulation now gives Liouville's equation (Hopf 1952) 

16 Fluid Mech. 18 
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This can alternatively be written in configuration space in terms of functional 
derivatives 

.V (4~)-1 Ir-r’I-1V’(u’.V’)u’d3r’ s 
+9- (4n)-lV l r -r ’ l -1V’Fd3~’  F.  (2.16) s i 

This equation is linear in F so that, in the usual way, an ensemble average will 
satisfy the same equation but will be described by a smooth function F. 

To specify the problem completely one must now specify the input force g k .  

The simplest way is to take it to be a random function of time so that the prob- 
ability that, over a period of time T, it is found to have the value F k  ( t )  is 

where JV is the appropriate normalization, and g-l is the functional inverse of 
the correlation function gk 

gk(t - 7 )  gkf(7 - t ‘ )  d7 = &(t - t ‘), (2.18) s 
( F k ( t )  F-k(t’)) = pk( , ( t )  F-k(t’) g( [ P I )  6 9  

(2.19) 

The symbol S F  implies integration over each p k ( t )  at  each time. (For a discus- 
sion of integrals of this type see Gel’fand & Yaglom 1960). This distribution 
implies that the mean of several F i s  given by 

s 
= gk(t-t’)A-l. 

(9kl(tl) Fk2k,(t2) - . *  9 k z n ( t 2 n ) )  = xg(71-7Z) g(73-74) - * .  g(72n-1-72n) 

x aK1+Kz’K3+Kp ..* aK2n- l+x2n’  

where 71.. . 72n is a permutation of t, . . . tzn, ki being the k appropriate to 7i, and 
the sum is over all permutations. Physically if the force 9 is to cause turbu- 
lence one expects g k ( t  - t ‘ )  to decrease much faster in time than the corresponding 
correlation function of the velocities(U,(t) u-k(t’)) so it is reasonable to specialize 
gk to the very convenient form of instantaneous fluctuations 

(2.20) gk(t  - t’)  = l2& - t ’). 

In  this case it can be shown (Appendix 2) that if the mean distribution function 
averaged over the fluctuating force is called ( F ) ,  i.e. 

( F )  = [ F P ( [ P ] )  SE (2.21) 
J 

then 
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Since the mean rate at which energy enters the system 

(2.23) 

is now fixed and equals /hkd3k there will exist a solution of (2.22) which will be 
time independent and correspond to the steady mean state of the turbulent fluid. 
Thus the probability of finding a velocity field u k  in the steady state with random 
input of h, per mode is given by the solution of 

This equation is a good starting point to discuss ( F )  but one also needs the mean 
values of quaiititieslike Ug(t) U;’(t’) and Ug(tl) U f ( t , )  V:(t3). (It will be understood 
that the words ‘time dependence ’ in this paper will always mean the dependence 
of such quantities as (Ug(t)  Uf,(t’)) upon t - t‘. The problem of the.decay from 
a turbulent to a quiescent system will not be considered here.) The averaged 
Liouville equation in principle contains this information in its Green function G 
which satisfies (k -2) G = d(uk-u;) 8(t-t’) ,  (2.25) 

2 being the operator in equation (2.22). But in practice this is not a useful 
starting point and a more general approach will now be given. 

3. The distribution function in generalized phase space 
The Liou’ville equation is a useful starting point in the kinetic theory of gases 

for one can further approximate (2.22) or (2.25) into a Fokker-Planck or Boltz- 
mann equation, due to the fact that one is able to distinguish the time taken 
between collisions and the time taken during a collision, the latter being much 
shorter than the former. It is this feature which makes the separation of the time 
from all the other variables such a useful feature of Liouville’s equation. In  
turbulence, however, it will be shown (and is indeed clear) that no such separation 
can take place and one needs an equation in which time is treated on the same 
footing as the space variables, in order to handle this or indeed any problem in 
which collective behaviour is important. The distinction between a method 
which describes the evolution of a system in time, and a method which discusses 
the entire history of the system is the distinction between Hamiltonian and 
Lagrangian formulations of classical dynamics. Liouville’s equation gives a 
phase space description following the Hamiltonian point of view (even though 
there may be no Hamiltonian function as is the case here). So what is required 
here is a method based on Lagrangian statistical mechanics. This is deceptively 
easy to write down, but has to be developed somewhat before it reaches the useful 
form (3.5) below. 

It is convenient to use the four-dimensional Fourier transform 
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Then equation (2.8) becomes 

- ( ik ,  + vk2)  Ug + C METJ U$ Uy + 2 Ff$@gP = 0, (3.2) 
P 

where the (italic) k ,  j, I now stand for (k, k,) and so on; in future this notation 
will always be used. In  analogy with (2.13) one may introduce the probability 
of U, taking the value u,, i.e. the probability, not of finding the system in a par- 
ticular state at  a particular time, but the probability of finding the entire history 
and future of the system. For a definite system this has a 6 function form 

P = J-J 6(U,-U,). (3.3) 
k 

Now since U, satisfies (3.2) i t  follows that if the whole of the left-hand side of 
(3.2) is denoted by X, 

This is then the Lagrangian description of the system. It clearly implies that 
P is a 6 function of the equations of motion (3.2), and is rather too general a 
starting point. One expects the system to fill phase space and will be content if 
for example all the moments of (3.4) are satisfied rather than the continuous 
infinity of equations which constitute (3.4). In  other words one would like one 
equation which for a statistical system will have the appropriate solution of 
(3.4) as its solution. To get one equation, (3.4) must be multiplied by some opera- 
tor which is a function of k and integrated with respect to k ,  and the resulting 
single functional equation should be capable of reproducing the moments of (3.4) 
obtained by multiplying by upu o...  and averaging over all u. Clearly the only 
operator which will fulfil this role is i3/i3uk, and the resulting equation is 

X,P = 0 (allk). (3.4) 

( ( i ko+-vk2)U~-  EM'?%,U;UT- CggPF{)P = 0. (3.5) 

There will be solutions of this equation which will not be solutions of (3.4) but 
the mode of solution presented below will always guarantee that the solution 
obtained is the correct one. By multiplying by ui (or indeed any function of the 
u) and integrating over all u, for a definite system (i.e. one with P given by 
(3.3)) it  leads back to (3.2). But since it is linear it holds equally for ensemble 
averages. The term ensemble average must not be taken literally, however, since 
it no longer has the same meaning as 'time average ' as it does in normal statistical 
mechanics. If the force is distributed according to (2.17) which is now to be written 
as 

a 
pk"&@ P 

~ ( [ F I )  = N e x p  ( -  CJ~~P ,P- ,A/~) ,  k (3.6) 

then the mean P can be written down at  once as a functional by substituting 
from (3.2) into (3.5). This gives 
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where the symbol JV is always used for the appropriate normalization. This 
gives an illustration of what to expect for the mean solution of (3.4). Though 
in principle it is a solution to the problem of turbulence, as it stands it is quite 
useless in practice. The task now to find a method of deriving ( F )  and ( P )  in a 
useful form and to this end a simple model will now be discussed in detail which 
will suggest the right approach. 

4. A simple model 
The non-linear term Z M u u  causes the turbulence and the simplest way to 

think of it is as a force which as far as one is concerned is roughly random. This 
suggests examining the problem of the response of a linear system to a random 
force in detail and though all the results of this section are well known it is useful 
to be reminded of them and to present them in an appropriate way. Consider 
then the motion governed by 

-=--JU+$,  
au 
at 

where 9 is statistically specified asin (2.17). (Thelabelk andthevector character 
of U are dropped in the model; J > 0.) Then Liouville’s equation is 

a a  

or, more usefully, the Green function of Liouville’s equation satisfies 

G(u,u‘; t , t ’ )  = S(u-u‘)S( t - t ‘ ) .  

(4.2) 

(4.3) 

This function has the property that it propagates F ,  i.e. if F ( u ,  t’) is the value 
of F at the time t’, then a t  a subsequent time t 

F(u ,  t )  = G(u, u‘; t ,  t’) F(u’, t’) du‘. s (4.4) 

Now if one starts at a time t’ with a definite F ( u ,  t ‘ )  and the force 9 has a distribu- 
tion (defined from t‘ on) of 9([9]) then the average of F at t ,  ( F ( u ,  t ) )  say, is 
propagated by the average of G, (G) say, defined by 

(G) =k([9]) G( [F]) SF. (4.5) 

This follows by multiplying (4.4) by 9 and integrating over the function 9. 
The mean Green function is well known in the theory of Brownian motion so 
the result of the integration (4.5) will be quoted. (A derivation is given in 
Appendix 1 since its generalization is needed in Appendix 2 . )  It is 
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where I ( t ,  t ‘ )  = exp [ - J ( t  - 71) - J( t  - T ~ ) ]  g(71 - T2)dT1dT2, (4.7) 

@(t-t‘) = 1 ( t  > t’), 
= 0 (t  < t ’ ) ,  

and g is defined by (2.19). Two properties of I need to be noted. First 

and secondly 
J ( t ,  t )  = 0 

lim I ( t ,  t’) = const. 
t-t’+m 

= lSmSmexp  [ - ~ ( 7 ~  + T2)1 g(T1 - T 2 )  d71d72 
2 0  0 

= &j say. (4.8) 

Thus (G) loses its dependence upon u‘ as t - t‘ tends to infinity and this implies 
that whatever F ( u ,  t’) is, ( F )  settles down to the Gaussian 

(4.9) 

In particular, if g has an exponential form 

g = ye-at, (4.10) 
then 

I ( t ,  t ’ )  = +y{J-l(J + m)-l- (J2+ m2)-l exp [ - ( J  + w )  ( t  - t’)] 

+ J- l (J  + m)-l exp - 2J(t - t ’ ) ] } ,  (4.1 1 )  

and g = J-l(J + w ) - l y .  (4.12) 

Since (G) propagates ( F )  the equations for ( F )  and (G) can be written down from 
the exact expression (4.6) 

[ g - k ( . u + ( i  g + J I ] $ ) ] ( G )  = 6(u-u’)6(t-t‘), (4.13) 

[; -; ( Ju  + (a ;; + J I }  k)] (P) = 0. (4.14) 

It follows that as t - t’ tends to infinity, the steady value of ( F )  satisfies 

which has the solution (4.9), i.e. 

while (G) settles down to the solution of 

(4.15) 

(4.16) 

(4.17) 
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A straightforward generalization is to the case of several 9 characterized by 
constants ya, aa. Then (4.17) has the factor y ( J +  m)-l replaced by 

(4.18) 

Another way of stating these results, which will turn out to be the basis for subse- 
quent work, is to observe that if the equation for G is written 

G =  &(u-u')S(t-t'), (4.19) 

where K = garjat + J I ,  

and this is expanded in terms of the solution of (4.13)) which for the moment will 
be called r rather than (a), then 

In  this expansion terms of order yn and of order 9 2 n  (and mixed terms like 
yn-" F2n-2m) are collected together. Upon averaging the expression in each 
brace vanishes, as do all terms odd in F, and (G) = I?. 

Clearly the second-order brace can be considered as defining y ,  

and hence I?, i.e. (G) itself. This of course is just what one would expect from a 
Gaussian distribution: it is specified by its second moment, which in this case is 
then related to the externally given y ,  a, and J .  A straightforward extension of 
this property will now be developed to get an intuitive solution of (2.24). 

5. A simple derivative of the turbulent distribution function 
I n  this section the model discussed in $4 will be used to derive the equations 

for the mean distribution function, using an intuitive argument. Consider then 
the equation 

xG(  ... u~,u; . . , ;  t , t ' )  = II&(u,-u;)&(t-t'). (5.1) 

(The mean value signs (. . .) will now be dropped since these alone are referred to 
when discussing F and G.) This equation describes the physical situation of 
energy entering the system due to the fluctuating forces, a t  a rate &, and leaving 
due to viscosity uk2. The term CMuu neither creates nor destroys energy but 
mixes it up amongst the various uk. To some extent, as far as one particular 
uk is concerned, CMuu must appear as a random force of the type discussed in 
$4.  But in addition the force acting upon uj say will contain a term MUkU-k+j 

so that the gain of energy by the component uj will depend on the magnitude of 
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u k  and hence the loss of energy by u k  will depend upon its magnitude. One can 
expect then that as far as one component u k  is concerned the effect of the rest of 
the turbulent fluid will be to produce a diffusive term represented as in $4 by a 
second derivative, and also a term which represents a dissipative force propor- 
tional to u k ,  i.e. to use the nomenclature of the Fokker-Planck equation, a 
dynamical friction. Thus one may expect the change of just one component u k  

(and u - k  for they always appear together) to be described by 

= b ( u k  - u;) d ( u - k - u L k )  d( t  -f) ( d k  = d-k> Wk = W-k)+ (5 '2 )  

I n  the same way the steady distribution function will be governed by 

The diffusion constant d k ,  and the total viscosity w k  can be written 

dk = hk + 8,) 

Wk = vk2 f R k ,  

15.4) 

( 5 . 5 )  

i.e. total input into components u k  (and u-,J 

total output 
= external input +input from all other components; 

= viscous loss (i.e. external output) + output into all other components. 

(6.4) 

( 5 . 5 )  

It must be emphasized that this section is only introductory to the next, 
so the derivation of 8, and Rk which will now follow will employ assumptions 
that are unnecessary and sometimes incorrect, but it will turn out that the forms 
of 8, and Rk so obtained are correct, so that the consequences of assuming (5 .2 )  
are better founded than ( 5 . 2 )  itself. With this proviso the solution of (5.3) is 
clearly 

f ( U k , U - k )  = (A/2/2nqk)exp ( - C U k a U a k A / q k )  
a 

where qk = dk/Wk. ( 5 . 7 )  

(There is always implicit in f the restriction divu = 0 so that the normalization 
is appropriate to two degrees of freedom rather than three. TheBgp in (5 .2)  and 
(5.3) ensure that the constraint is not violated by the motion, but in practice 
i t  is most convenient to keep the constraint as a subsidiary condition and in 
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effect drop 9 from the equations.) Then the mean of U t  u!!k can be expressed in 
terms of qk, 

(u,” u.”k)  g u c k  f(uk,u_k)dUkdU_kS(diVU) ( 5 . 8 )  

(5.9) 
s 

= A-l qj ,9ta.  

If ( 5 . 2 )  is multiplied by ug 011 the left and by fuCk on the right one obtains upon 
integration over all u the relation 

(ug(t) Utk(t’)) = gGkUI_$f(U;UIk)s(diVU)dUkdU-kdU;dUlk (5.10) 

(5.11) 

From these results and those of $4 one may obtain f lk  and R,. First, consider Sk 
which is the analogue of the expression 

s 
= (Ug(O)U!,(o))exp[-w,(t-t’)] (t > t’). 

C ya( J + @a)-’* 
a 

The present 
ponent k, and the wa is the lifetime of the fluctuating force, i.e. of 

is the analogue of J ,  the lifetime associated with the one com- 

The expression y is the analogue of the mean square of the force, i.e. of 

(5.12) 

This is readily evaluated if it  is assumed that in the first approximation the 
components are independent and their distribution function 

F = rIf(u>>u-j) (5.13) 

= uZjexp[- Cufu“_A/qj]. (5.14) 

j 

I a, j 

(It must be understood that terms are not counted twice in the exponent.) One 
then has the integral 

” 

= 9naY9~’Y’Sj+lSj,+1.qjqj,/A2 +9fB’9TY’Sj+j,Sl+1’qj ql/A2 

+ 9ff9Tp Sj +1‘ Sl+ I qj ql j A 2. 

(The possibility of j = 1 = j’ = 1’ gives a contribution smaller by a factor A than 
those quoted and is disregarded. Of the three terms the first gives zero, a property 
of M a f l y ,  and the answer stems from the remaining two which have j +j‘ = 0,  
1 + 1’ = 0 and 1 + j’ = 0,  j + 1’ = 0 respectively. This then implies that the C wa 
is represented by wj + wl. Finally then, using (5.9) for the means, a 







where F, is given by (5.14).t Thus one writes 

= cf[ll] HfikTL-kEb' 
n k  

where n is a vector in the Hilbert space of all the Hermite polynomials 

n = (  ... nk,n -k...).  (6.8) 

2 Wknk* (6.9) 

The eigenvalue associated with the label n is 

k 

It will be seen that the nk, n-,th polynomial is a tensor of rank n,+nPk. (The 
tensor indices are not written in explicitly.) Well-known relations exist between 
the polynomials such as 

(6.10) 

(6.11) 

but in practice only a few of the polynomials will be needed in an infinite system 

a 
@ Hnkn-k = (2) (%k+ l ) k ~ ~ n k + l , n - k - n ~ H n k - l , n _ k ,  

A 
UkHnkn-k = (%k$- l)gH'k+l,n-kf -nkHnk-l.R-k, 

qk  

(6.12) i Ho = 1, 
Hik Uk/ 4 2 ,  

H1kl-k = (uku-k- qkA-l)* 

These polynomials are orthogonal to one another against the Gaussian F,, 

Consider the differential equation for F rearranged in the form 
but are not normalized to unity but to (qk/A)nk+-k. 

Now, following the ideas of g§4 and 5, ascribe to S and R the (superficial) order 
M 2  and consider F expanded as a series in M .  Then one has 

F = F, + Fl + F2 + . . ., 

I ........................................................................................ 
t The suggestion that Hermite polynomials should be used for the expansion 

been made by Hopf (1962). I am gratefuI to Dr Kraichnan for this reference. 

(6.14) 

(6.15) 

(6.16) 

has also 
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If the right-hand side of each equation is now rearranged in terms of the 
Hermite functions, one has then to solve equations of the type 

Xq = c 'ill] 11 &Lk'I-kFO' (6.17) 
[nl k 

which have the immediate solution 

4 = C 'ill] (c nkwk)-' 11 %kn-kFO' (6.18) 

To complete the specification of the expansion one wishes to give correctly the 
mean value of S U f k  from Fo alone, so that 

b l  k k 

I(&+&+ --.)gu!!knduj = 0. (6.19) 

Proceeding now to calculate F,, 

The right-hand side contains BlkHlj Wl, so that 

(6.20) 

(6.21) 

or in continuous variables 

The expression for F2 is much more involved, 

The resolution of the right-hand side into Hermite polynomials is straightforward 
but tedious and leads ultimately to the form 

F 2 -  - C M$M~,~~[?"(wk, + wj, + wl,)-l qi'q;l@$g+'$'Y' 

a, P 

all indices 
all vectors + C (#kq i ' -&)  Hlk l -kq i2A(Wk + w-k)-l, (6*24) 

where, writing 

Hk for H1k,l-k' 4;' for gsPqk3 &+j for &+jo 

and 

w4 = 0, + wb + w, + w, 

w6 = wk + wj + w1 + wk' + wjt + ol, (k . . .I' all different), 

(a, b, c,  d all different, selected appropriately from k . . . Z'), 
w4,2 = (w, +w-,) + (wo + w, +we + wf), (a, c, d, e, f all different as before), 

w2 = o,+w-,, etc., 
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@kjlk’jT aha’B’r‘ = 2uj”u[Hp uFG; &k+j,w<i 

+ 4Hfy qy’ H p  &kkfjf &i.,y w c i  + 4Hj”’Hra’Hks., akk+j’ &j,y i, 
+ 4qp’H[”‘HP wcfr + u f ur Hga’ u f uF’ 8W-k 04, 
+ 2q;b’H:y’ H~a’&kk‘-k&ir-j w<$ + 2Hf8’q~r’Hkaa‘&kk’-k&i-i,~4~ 
+ 2Hf8’Hry’HgU‘ &kk‘-k&j‘-i wz, i ,2 + u/ ur @ u[‘u?’u$ w,’ 

+ 4uruguF’ug:qfp’&i-j.wq1 + k~ ,~u~uF ’u$  H/”’Sj-i.w<k 

+ 2ur u f? uF’q@’ 3 &Y-j# wy 
+ 2qfP q r y ‘  Hga’8y-k&i,-j w,l+ 4q[Y’qya’ H P  Jkktj, Sj+,w; l. (6.25) 

It is implied in the summations that all the u are different Fourier components, 
all products of the same component having been resolved into the polynomials. 
Now of all these terms only the last contributes to (6.19), and S k  and R, are 
therefore chosen to make this vanish for each k. By comparing the coefficients 
of qk one sees that S, and Rk are precisely those of the previous section. The 
remaining terms will give the values of 

and 

u f? up‘ H p ’  dYPj w< + 2ur 

(u; uf u[ uL> (u; u[ ur UL ui ul;) 
to this order of approximation. It is to be noted that the four-u correlation can- 
not be factorized into two (uu) correlations, and the six u cannot be factorized 
into C(uu x uuuu). 

Now in view of the complexity of F2 it  might be supposed that the higher 
approximations become unbearably complicated. This, however, is not the case 
when one passes to the infinitely large volume and a general procedure for 
writing down the nth term of the series is given in Appendix 4. At each stage 
new terms appear which give corrections to S and R in order that (6.19) be 
fulfilled. Some general results can be stated about this series: (i) The number of 
positive terms to any order equals the number of negative terms. (ii) The nth 
term of S can be written symbolically as 

/[MI2” [q]”+I [ C ~ ] - ~ ” f l  (d3k)” 

s [MIzn  [q]” [ C W ] - ~ ~ + ~  (d3k)”. 

For example, the expressions (5.16) and (8.21), and typical terms of the next order 
which are (Appendix 4) 

and the nth term in R as 

for S and R, respectively. In  the symbolic notation these are 

/ [ M I 4  [qI3 [d3kI2 and [MI4 [qI2 [d3kI2, s 
the M containing &-functions which remove three integrations. 
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This completes the discussion of the steady distribution, and in the next 
section the time-dependent case is discussed. 

7. The general expansion in the generalized phase space 
To resolve the time-dependent case the same method as that of $ 6 will be em- 

ployed. There is no point now in averaging out the random input force before- 
hand, so the expansion will be made in 9 as well as M ,  they being considered 
of the same order in as much as both are approximately random as was implicit 
in $6. At this stage it is worth noting that there is no need for 9 to have the 
Gaussian distribution of (2.17) and independent values can be given for say 
(9-999). These will however affect only the corrections to Y and W being 
corrections to the basic assumption of randomness. The equation 

will be rearranged as 

where Qk = 9i?-k+vk2+iko. (7.2) 

(7.3) P = P,+P,+P,+ ..., 

The quantities Yk, gk, Qk,  Dk will appear analogues of s,, Rk, wk, dk. Expanding 
as before 

it will now be required that 

(7.4) 

where the averaging is over the distribution of the force 9 which will still be 
given by (2.17) and (2.20). The analysis goes through exactly as before, for 
example. 

so that only the results will be quoted. Since it is still true that the mean rate 
of input of energy is given by 

(9k9-k) = h., 
one may define 

Then if A d k O ( ~ Z ~ P k )  = 2k9gP 
9, = Dk-h.,/Qk. 

and 

(7.9) 
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There is one great simplification to be noted in these equations. Since 

k, +j, + I, = 0 

SZk + a, + SZ, = gk + gj + LZl + vk2 + vj2 + v12. 

(7 .11)  

(7 .12)  it follows that 

If one introduces Qk by the definition 

2ia' = Q k q k g P ' ,  (7 .13)  

then from the definitions of 2 and q it  follows that 

Qkdko = 1. (7 .14)  

If one now tries gk = Rk as a solution of (7.9) it does indeed satisfy it. But Rk can 
be taken as known since the equations for it are independent of y k  and Qk. It 
follows that one can now write a closed equation for Qk 

s 

in which qk, wk, ak, 
be written in time-dependent form by Fourier transformation 

all have the same meaning as before. This can usefully 

(& +@k) &k(t) = ' e - , k ~ + ~ j 5 ( j ) k ) Q j ( t ) Q _ k _ j ( t ) ,  (7 .16)  
qk 

where (7.17) 

and 5 is the kernel of the integral in (7 .15) .  
The extension to higher approximation goes through exactly as before and in 

the time-dependent form the remark (i) still holds, as of course does remark (ii) 
when d3kdk, replaces d3k. 

An expansion has now been obtained in the time-independent and time- 
dependent cases for the distribution function. By analogy with other branches 
of theoretical physics it may be termed the generalized random-phase approxi- 
mation. To understand its implications one needs to solve the equations in as 
many cases as one can, and it will turn out that it is possible to make considerable 
progress in spite of the complexity of the equations. 

It is important to emphasize that the expansion developed here is quite 
different from those obtained by truncating the infinite set of equations got by 
taking moments of the Navier-Stokes equations, which have a structure similar 
to the equations developed in quantum-field theory. These approaches in 
effect try to make Rk, g k  do the work of both ( S k )  yk,), (Rk, gk)  and the form of the 
solution suggested can be got from the forms above by taking, in say the time- 
independent case, 

and dividing the numerator into the denominator 
qk = (hk+sk)/(vk2fRk) 

qk = hk(  vk2 f Rk)-' ( 1  f #k/hk)-l  

hk(VkZ + R k  - Yk2f$/hk)-l. 
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Now expand the integral for Rk 

Rk = L]jkqj(Wk + wj + w])-’ d3jd31. s 
E k l j k q j ( w j  fw1)-’dyd31-Wk &jkqj(wj fw1)-2d3jd31. s 

If one now writes f& = hk(Vk2 + Ek)-l 

and puts further wk 2 vk2 + E k ,  then 

qk g & vk2+ ~ L,jkqjqIdyd31)-1, 

which is a form often studied, and typical of the kind of expression obtained by 
manipulating the Navier-Stokes equations directly. There is no underlying 
physical plausibility for this form, however, and though rather complicated 
mathematical manoeuvres have been performed above, they follow as closely 
as possible the intuitive models of earlier sections. The relation of the equations 
derived here with the work of Kolmogoroff and Kraichnan will be discussed 
at the end of the next section. 

( :/ 

8. Properties and solutions of the equations 
Before attempting to solve the equations derived in $3 6 and 7 one must verify 

that the expansion of P is in accord with the original Navier-Stokes equations 
from which the whole analysis stemmed. To see that this is the case multiply 
the original Navier-Stokes equation (2.8) taken a t  the time t ,  by u k  a t  the time 
t‘, and average. This gives 

a 
at -- ( u ? k ( t )  Ug’(t’)) + vk2 ( u . k ( t )  Ug’(t‘)) 

or in the four-dimensional Fourier transform 

B g a ’ ( i k O - v k 2 ) s k - - ~ E 8 ( F ~ U ~ ’ ) +  2 MZfT(UfUTUZ‘) = 0. (8.2) 

Using the expansion for P, the two terms on the right are evaluated from Pl 
(7.5), and give &/ak and Yk--Rksk respectively, so that the original equation 
implies that 

B 8, Y ;  j, 1 

(8.3) (iko- v k 2 )  22k +r\ hk + (9k- R k 2 k )  = 0 
LLk 

which is indeed (7.15). 
A similar result applies to the time-independent 

discussion of the flow of energy. The total energy is 
case and there represents a 

(8.4) 

Fluid Mech. 18 17 
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hence, at  any time, the ratio of change of energy is given by 

- =/vk2qk d3k-t C MGYufuTu,"). ( 8 . 5 )  
a h  

a 8  
at 

Now the term in ik? vanishes by symmetry, but it can also be written from Fl and 
gives 

Rkqk)-  (8.6) 

But the definitions of S and R ensure that this expression vanishes for 

It follows that the total external input and output balance and also the total 
internal input and output, as indeed must be the case since no work is done by the 
inertial terms. Whereas S and Rq being rates at  which energy is absorbed or 
emitted are familiar concepts, the conservation properties are also true of Y 
and R 9  which refer to action. 

Turning now to the solution of the equations, the simplest case is clearly that 
of $6,  so one may ask whether there are a n y  conditions, however remote from 
physical attainability, under which an exact solution can be obtained. It is a 
property of M that, bearing in mind that divu = 0,  one may rewrite 

(8.9) 
M$ uj" ul' uk" qg1 c -  

a,By;kjl @ k f W j + @ l  ' 

in the form 4 C Mi$' ufur u,"( qc - q,r l). (8.10) 

It follows that if qk is a constant, not only El, but all higher terms vanish identi- 
cally, and it is clear from their definitions that in this case 

a&; kjl 

#k = R k q k .  (8.11) 

From this and equation (5.4) one has 

hk = V k 2 & ,  (8.12) 

so that constant qk will be a solution if hk is taken t o  be 

(8.13) 

(8.14) 

If h and v both tend to zero, their ratio is arbitrary and one can write q = ( 2 ~ T ) - l ,  
since this is the case of thermal equilibrium, but in general q is well defined. For 
constant q the actual integrals for S and R are divergent which is scarcely sur- 
prising with an input rising like k2. But there still stems from this analysis the 
useful comment made earlier that in the corrections to S and R the number of 
positive terms to any order equals the number of negative terms, for it is only 
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by this means that every order vanishes when q is constant (both 2, w are of 
course positive definite). 

To consider more realistic cases one can simplify the equations by assuming 
that the input is more concentrated near small k so that the viscosity can be 
ignored in the first approximation. This is equivalent to the statement that the 
Reynolds number of the turbulence may be considered infinite. Of course one 
cannot balance input and output in the absence of viscosity, but this point can 
be resolved as will be shown. The simplest input is a power and it is possible to 
solve this case in the limit of infinite Reynolds number. So consider 

hk = h( Ikl k i l ) -a ,  (8.15) 

in which case the equation for Rk contains no dimensional parameters, and there- 
fore q k ,  Rk must be powers, and therefore also &. Define q,  R by the equations 

(8.16) 

R, = Rlkln. (8.17) 
Then from (5.21) 

Rlkl" = 4R-l d3Zd3jI jI-mLkj,(lkln+ Ij ln+ (8.18) I 
Writing 

and using the explicit form of L( N I j I 2), one finds 

Rz]kln = qlk15-m-nA2, (a.19) 

where A2 is a numerical constant, independent of k .  Therefore 

R = A J q ,  (8.20) 

and 5 = 2n+nz. (8.21) 

In  the same way from (5.16), 

,yk = q2R-1 1 k 1 5-2m-n. (8.22) 

From the definition of 2k one now has 

q1 kl -m - {h( I kl kyl)-" + q2R-11 k15-2m-n) R-l I kl-%, (8.23) 

and it follows that 5 - 2 m - n  = -a, (8.24) 

- m + n  = --a, (8.25) 

i.e. n = 9(5-a) ,  

m = 9(5 + 2a) 

(8.26) 

(8.27) 

and that J A  q8 = hk? + @BA-:, (8.28) 

i.e. q = h#(A: - BA-*)-f @. (8.29) 

This result is not restricted to the approximations to 8, and Rk of equations (5.16) 
and (5.19) but is true to all orders, as is seen by considering the symbolic expres- 
sions for the higher terms quoted in 8 6. The effect of the higher terms is to alter 

17-2 
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the coeEcients which occur. It follows that there exist constants K ~ ,  pa, cra 
such that the solution is given exactly by 

(8.30) 

(In the literature it is customary to use the distribution per unit I kl , i.e. 

E(lkl)dk = qkd3k 

so the above result gives E( lkl) cc hbk-4(2a-l).) 

A particular case is that of white noise a = 0 (white that is with respect to wave- 
length; the definition of hk has already assumed whiteness with respect to fre- 
quency), for which 

qk = KhfIkl-5, 
Rk = ph*Ikl*, 
s k  = rh. 

(8.31) 1 
The validity of these solutions depends on the integrals A and B, and the integrals 
appearing in higher approximations, all converging. It is Rk which is the critical 
function for if it exists it is easily confirmed that X, and all the higher functions 
also exist. For small I j I I; N lk12, 

so that the Rk integral goes like 

/cij 1 j 12 I j I ~ ( z a - 5 ) ~  (8.32) 

which implies that a! < 2 .  For largej, L contains terms like k. j and k2 but allow- 
ing for the angular integration both give the expression 

1 Ij I 2d' J I jl- 5(5--al-&5+2d, (8.33) 

implying that a > - 1. The solution then is valid for 

2 > a > - 1 .  (8.34) 

For a! < - 1, a solution cannot be obtained without invoking the viscosity which 
then affects the solution for all I kl , as in the first example of this discussion. For 
a! > 2 the precise nature of the input at  small Ikl can be expected to affect the 
entire solution, and the input itself will of course be modified at  small Ikl in 
order that the total input be finite. This case will be discussed further shortly. 

One has then a picture of energy entering the kth component of the system at 
a rate Ah(lkl/kl)-", gradually being transported to higher and higher Ikl till 
finally the viscosity can no longer be ignored, with the result that qk falls away 
very much faster. Finally, a region is reached in which Rk is negligible and only 
external input and output matter giving 

h( Ikl / W a / v l k  I 2. (8.35) 
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The apparent paradox that one may investigate the small I kl region by dropping 
the viscosity, even though the latter is required for overall energy balance, is 
resolved by observing that in the absence of viscosity the integrals over s k  and 
Rk do not converge. Large I kl values act as an infinite capacity well for energy, 
and the formal identity of the integrals over I kl of 8, and Rk is not meaningful. 
The inclusion of the viscosity restores the precision of the identity, 

There is in the model of turbulence with source h(lkl/k,)-", a localization of 
influence of one I kl value upon another. Thus if one takes a region 6 of k space 
near to k ,  say and asks how much this region contributes to S k ,  the answer is an 
amount which tends to zero as k, + k,  increases. To be precise 

dSk, (kl + k Z ) 2  qkl+kz qk2 Rt:k2S 

which tends to zero as k, + k,  tends to infinity. A similar statement holds for 
R k ;  both remarks are essentially contained in the statements that the integrals 
over all Ikl space for 8, and Rk converge. Consequently one can regard the situa- 
tion as a cascade of energy from small Ikl to larger Ikl, supplemented by an 
external input which, per component, decreases as I kl increases. Finally, for 
large k viscosity comes in and kills the flow of energy. Of course it is clear from 
the definitions of Rk and Sk that energy flows in and out of all components to all 
components, of larger and smaller k ;  but on an average it flows from small to 
large k ,  the imbalance being taken up by the input. 

The above model is still not satisfactory, however, since though the input 
per component decreases, the input per unit wave-number does not, the latter 
incorporating a weight factor lk12 from Ik12dk, which overcomes the Ikl-". 
A physically realistic model will decrease much faster than a power and one should 
expect h k  to be zero for I kl > K ,  say. (This remark need not apply in magneto- 
hydrodynamic turbulence where white noise from eIectromagnetic sources is 
quite feasible and the previous model therefore significant.) Consider then such 
an input, & =  0, Ikl > K,. (8.36) 

Integrate the equation ' k  = Rkqk-Sk 

up to a value K ,  where K > K,. If one introduces 

(8.37) 

= /0K'&d3k, (8.38) 

then (8.39) 

Since L contains a term 6(k + j + 1) one may write 
Lijk = AM 6(k + j + I), (8.40) 

and so, by writing k + j for - k in the second term obtain 

(8.41) 
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where 2 is the region between the two spheres 1 k (  = K ,  I k + j 1 = K. Now suppose 
tentatively that the solution to this problem is again a power law, with 

qk = qlkl-", Rk = R(kl-n. 

Then writing Ikl = Klk'J and IjJ = Klj'l one sees that 
3/e = K8-2m-nxq2R-1 I 

(8.42) 

(8.43) 

where xis the value of the integral, a dimensionless constant. But &? is a constant, 

(8.44) 
independent of K ,  so one has 

which when combined with the equation for Rk, i.e. with (8.21), gives 
8 = 2m+n, 

(8.45) 

This means that qk = Ik/-%'i@(x/A)-~, (8.46) 

or in terms of the distribution per unit wave-number 
E(Ikl)dk = 4Tqk]kl2dk 

= 4 n ( x / A ) t 2 3  I kl-*dk, (8.47) 

the Kolmogoroff spectrum (see, for example, Batchelor 1959). Unfortunately 
the problem cannot be resolved so simply for the dimensional arguments only 
apply if all the integrals converge, and they do not. The relation between qk and 
Rk is still (5.19) and still only converges if sljI2qjdj exists for small Ij(. This is 
clearly not the case for a Ij [-I? dependence. Now of course at small (jl one will 
expect qj to depart from Ij[-%i and directly show the structure of the input. 
But the fact that one cannot still use (j(-%Inear Ij( N 0 in the integrals implies 
that the effect of the deviation will make itself felt everywhere and hence the 
structure of the input will be noticed everywhere. Unlike the power input model, 
this case does not form a simple cascade. To investigate what happens more fully, 
examine the equation for Rk in detail 

R~ = ; ( z ~ ) - 6  {( k + j ) 2  [i - 2 (3082 okj C O S ~  e,, + cos ekj cos o,, cos ei,l 
- (k2 + j2 + k .  j) [cos2 8, - cos2 Oj l ] }  8(k+ j + 1) 

J' 
X qj(Rk+Rj+&k-j)d3d31 (8.48) 

= 4(2n)-'/[k2 (1  - COS28kj)  + p ~ ]  qj(Rk'r Rj + R-k-j)-' d3j, (8.49) 

where pki tends to zero with ( j  1. Suppose that for 1 j I < J the value of qi directly 
mirrors the input, and remove this region from the integral. Near j = 0,  Rj 

(8.50) is small so one may write Rk + Rj + R&j 2Rk 

giving 

If again R, and qk are taken tentatively to be powers, the integral as before can 
be transformed into 

(5.51) 
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This integral will not be independent of k unless it converges as J 4 0. This is 
the case for the part depending upon pki but not for the first term which again 
gives a contribution like k2Ri1.  So altogether one may write 

Rk N 5?k2Ri1 + %:(k\5qkRk1. (8.52) 

This now contradicts the original assumption of a pure power law since it suggests 

(8.53) 
that R lies between 

Rk Cc I k l  
and Rk CC Ikl'qk* (8.54) 

Assuming the former, since 8 = 2rn + n, one has 

qk lk1-'? Rk I k l *  (8.55) 

This law has been obtained by Kraichnan in the paper mentioned earlier. 
Kraichnan gives a discussion of the experimental situation in this paper. If one 
adopts the other extreme, one obtains the Kolmogoroff result 

Presumably the complete solution will lie between these two extremes which 
are in fact very close to one another. These remarks again apply to all higher 
order terms which have the effect of modifying the coefficients and V. The 
Kolmogoroff hypothesis in the present context is that the coefficient a is 
negligible compared to $?, but there seems no reason in the present analysis for 
this to be the case. The surprising point is that if one makes the exact opposite 
of the Kolmogoroff assumption: that the energy input into a component of large 
k is directly dependent on the behaviour of the system in the external input 
region, i.e. 9, one only changes the lkl dependence of qk from lkl- to 
lk/-%'. 

There now remains the time dependence to be investigated and this will be 
done in the next section, 

9. The time correlation of the velocity correlation functions 

may be integrated over all k,, and in order that it will reproduce the equations of 
$ 6  one must have 

k , 2 k d k ,  = 0,  (9.2) s 
i.e. a F i , = ,  = 0. 

In time-dependent form one has then to  solve 

with the boundary conditions 

(9.3) 

(9.5) 
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which will assure that 

and so (dkf& = h k  +i$. The time dependence of 9, is highly involved since it has 
a highly convoluted structure. If one tentatively associated a time dependence 
of exp ( - w k t )  with Qk(t) then y k  would behave as an average over 

5&(0) = sk, (9.6) 

exp [ - (6& f w-k-j) 61- 

In  different regions of k space ( w k  + w-k-j)-l will be larger or smaller than w i l .  
I n  particular, if wkis a power, (wk + w-k-j)-' will be a maximum for j = 3k. Though 
i t  is now clear that Qk cannot have a simple exponential decay one can still 
argue that yk will consist of some part decaying slower than Qk and some part 
faster, so a crude assessment of the situation will be to write 

= w k + K )  (9.7) 

where W, decays faster than Qk, V, slower. For short times, the system moves 
slowly because 2 = 0 a t  t = 0. This means that initially 

2 k  = q k - P k t 2 )  (9.8) 
i.e. 2 k  = q k e x p (  -ckkt2). (9.9) 
After a while wk will become small, V, will still be slowly varying, so the behaviour 
a t  intermediate times will follow the solution of 

(9.10) 

i.e. 2 k ( t )  = p k ( t )  frWkl, (9.11) 

where pk(t) is some slowly varying function. Finally, a t  very long times only the 
most slowly varying components remain, and following the suggestion above a 
crude model will be to consider V, = vkpk  (9.12) 

and since i k  is small, therefore wk$k = v & i ? i k .  (9.13) 
This equation has the solution (vk/wk)  t-ylki where y is an arbitrary constant chosen 
to fit on to the intermediate solution. It is very crude of course to assume that all 

decaying more slowly than 2 k  do so a t  the minimum rate, but a more elaborate 
argument allowing for the variation of 2j leads to a time dependence 

(log t)% t-y'k' 

which is not very different on a logarithmic scale. These arguments can again 
be applied to higher terms in the expansion and rather surprisingly still go 
through. For example, one finds corrections to (9.13) of the type 2ik and so on, 
which again leads to the final power law, so the general picture of an initial Gaus- 
sian form (9.9)) followed by a main exponential region (9.11) characterized by 
(I&) then finally a power law tail is independent of the order of the approximation. 
There is some correlation between any one Uk and any other uj, and between 
any u k  and the input. For very long times in the behaviour of every uj will be 
found the residue of the behaviour of the most slowly varying parts of the system, 
either of those uj for j - 0, or of the input should there be slowly varying com- 
ponents in i t  (which have not been considered here). 
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10. The accuracy of the expansion 
In much of the work of $4 8 and 9 it  has been possible to state that the higher 

terms of the expansion do not alter the functional form of the solution but only 
the constants which appear. There still remains the question of how well these 
constants are represented by the simplest approximations to S and R. In the 
case of an input h( Ik[/El)-a it  has been shown that the solution can be written in 
terms of the two constants pa ,  ra of (8.30), the coefficients of turbulent viscosity 
and turbulent diffusion. The series for s k  and Rk thus reduce to a pair of equations 
of the type 

There is no functional problem remaining and in principle the solution of these 
equations can be found numerically. But the integrals involved are considerably 
more complicated than say the radiative corrections to the Lamb shift which are 
the most difficult integrals of this type to have been performed, to the author’s 
knowledge. So the best that can be offered at  this stage is a discussion of the 
features of these integrals which will lead one to suppose them to be small, As 
has been noted, whereas 8, and R, in the first approximation are both given by 
single positive integrals, the higher approximations are mixtures of positive and 
negative terms, as many positive as negative in both X and R. This fact is con- 
nected with the existence of the exactly soluble model (8.13)’ and since the inte- 
grations are heavily entwined in all the higher terms one may hope that the posi- 
tive and negative integrals will approximately cancel. It is possible to go a little 
further with the power input model if the integrations of say fourth-order terms 
are performed approximately by altering the denomination in such a way that the 
resulting integrals are products of those for S and R. This can be done without 
spoiling the feature of equal positive and negative terms, and then one finds 
that the correction to qk due to the fourth-order terms is of order 

i.e. (10.1) 

(10.2) 

(The precise statement of the approximation is given in Appendix 4 with the 
discussion of higher order terms.) The expansion in this approximation is then 
in the ratio of the external input squared to the internal input squared, and the 
accuracy of the expansion is measured by the smallness of the external input 
required to keep the system steady. This argument is of course limited to the 
power input case and does not mean that if h, = 0 anywhere the method is exact 
in that region of k space. 

Since these purely mathematical arguments are not very convincing it is 
worth considering the situation from the physical point of view and asking 
what phenomena are considered small by stopping at  the first approximations 
for 8, and R,. The distribution function 

P = F,+Pl+P!+ ... 
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predicts the correlation of three velocities 
B; " ' 9 [P9Yy '  q1 qj Mgif'y'A 

, (10.3) ___ 
w k  + w j  + wl 

(ug  uf ur> = 8k+j+l c 
a ' r y '  

and permutations 

but it also predicts correlations of four and six velocities which cannot be ex- 
pressed as simple factors 

(Ug Uf Ur Vn) = (terms which vanish if all k, j, 1, m are unequal) 

permutations 

permutitions 

41 qj  % 8j'+k'8k+k &j+j" 8i+l'8n+l" 

x (wk" + Wj" + wy?)-l (wl* + wk, + wj" + f+)-l, (10.4) 

<Ug Uf Ur Vm U: U;) = (terms which vanish if k . . . p are not all unequal) 

permutations 

q j  q l q n  qp 8k+k'8j+j'81+l'8m+k" &+j" 'p+I" 

x (wk" f wj" + wI")-' (wk'+ w j f  + + wk" + wj" .f wl")-'. 

(10.5) 

To ignore F5, F6, etc., is to assume that the five U correlation can be expressed in 
terms of the three and the two, and the eight U correlation can be expressed in 
terms of the six and the two, and the extent to which they are not is a measure of 
the inaccuracy of the theory. This is rather a remote physical effect. A much 
simpler one is to consider the probability that the velocity at  a point x is U. 
This is given by 

f(U) =b(u(x)  - U) F n d u  (10.6) 

and will be independent of x in the homogeneous case. Clearly if the expansion 
for P is used it develops f in a series of Hermite polynomials 

F,8(u(x) - U) n d u  = fo c a$%,( U ) .  (10.7) 

The basic Gaussian f o  is chosen so that H ,  never appears. Working to second order, 
since by symmetry a p )  is zero, one has fourth- and sixth-order polynomials alone 

s n 

(10.8) 

The residual terms in F.. are the cause of the subsequent terms of the expansion, 
so one may now say that the expansion should be good iff is a Gaussian with 
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small additional terms in H,, H ,  and no further corrections such as the H8,  
H,,, H,, which arise from F4. A more detailed analysis shows that the effect 
of the F, corrections is to make the Gaussian rather more peaked a t  the origin. 

More elaborate correlation functions such as the joint probability of finding 
U, a t  X, while U, a t  X, can be defined 

f(U,, x,; u,, X2) = W G , )  - U,) OG,) - U2) d u ,  (10.9) s 
and discussed in a similar fashion. 

Similar arguments can be applied to the time-dependent case. It will be 
noted that q k ,  R, and hk form a soluble set of functions without discussing time 
dependence so that if they could be obtained from experiment, the equation 
(7.16) governing time dependence could be viewed as one for Qk alone with 
qk, Rk, put in as externally defined functions. 

1 1. Conclusions 
Many problems in theoretical physics can be expressed in terms of functional 

differential equations, but turbulence is an exceptional problem in that there is 
in the limit of large Reynolds number no external parameter which can be used 
as a basis of an expansion technique. I n  the language of quantum field theory 
i t  is a problem of infinitely strong coupling constant. It follows that an expansion 
must be based on the internal properties of the system and with one’s present 
limited knowledge of non-trivial mathematical operations in Hilbert space 
the only substantial fact is that since the probability of finding a particular 
velocity a t  a particular point in a fluid is quite close to a Gaussian (Batchelor 
1959, ch. 8), the system is substantially random and the generalized random 
phase approximation should be applicable. This method appears to be the 
simplest which stems directly from Liouville’s equation or the generalized 
phase space equation, and is entirely consistent to any order in the sense that it 
contains no features which contradict the original equations from which i t  
was derived. The situations discussed in this paper are all highly idealized, being, 
it is believed, as simple as can be whilst still containing the mathematical 
essence of the problem. For this reason no detailed comparisons with experi- 
ments are offered, though it is hoped that the method of attack will prove a 
sound basis for the discussion of real situations and further calculations to this 
end are in hand. 
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led to an expansion of 5 8, Dr Kraichnan for a correspondence which eliminated 
several errors from the first draft, and caused the author to invent the work of 
3 3. The first draft was an account of lectures given by the author a t  the Culham 
Laboratory in 1961, and the author is grateful for the opportunity to visit the 
laboratory on that and many other occasions and for many discussions there, 
particularly with Prof. W. B. Thompson. He would like also to thank Prof. 
Flowers for many helpful discussions concerning the problems of turbulence and 
the writing of this paper. 
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Appendix 1 

U + J U = P ( t )  The equation of motion 

can be solved directly with the boundary condition U(t’) = u’, giving 

(A 1.1) 

U = u’exp [ - J ( t  - t’)] + [ - J( t  - r )]  P(7) dr. (A 1.2) 

The Green function for the motion is then 

u-u‘exp[-J(t-t’)]- . (A1.3) 

It follows that the mean Green function is given by 

Write G parametrically by using the integral representation of the S function 

G = (27T)-1 Q/yrncih exp ih u - u’ exp [ - ~ ( t  - t’)] - exp - ~ ( t  - 711 ~ ( 7 )  d r  . 1 
(A 1.5) 

By substituting in (2.17) the integration over P is performed by completing 
the square, i.e. by changing variables to 

( st: 

P’(r) = 9 ( r ) - i h  g(r-r’)exp[-J(t-r‘)]dr’O(t-r)O(r-t’) ,  (A 1.6) st: 
which leaves 

ih(u - u’ exp [ - J( t  - t ’ )])  

-h2/tStexp [ - ~ ( t - r ) - ~ ( t - r ’ ) ] g ( r - r ’ ) d r d r ’  
t’ 1’ 

(A 1.7) 
This is finally evaluated by again completing the square to give 

( G )  = ( I / r ) l  exp [ - (u - u’e-J(i-t‘))2/l(t, t’)] (A 1.8) 

where I ( t , t ‘ )  = d ~ ~ .  (A 1.9) 
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Appendix 2 
If the non-linear term is added one may still write the solution of 

-- - - vk2 Ug + C MF!& U[ Uy + 2 F [ B g p  (A2.1) 
a u; 
at Pr;jl B 

as U; = u;'exp[-vk2(t-t')]+ e x p [ - v k 2 ( t - 7 ) ] { ( M U U ) , + ( 9 - B ) , } ,  St: 
and proceeding as before eventually obtain 

( G )  = n (I&) exp [ - A (ug - ug' e-vk'(t-t') + St:( M U U) ;  e-vk2(t-7) d7 

with the condition divu = 0. 
This of course is of no use as it stands since the unknown interaction term 

remains, but upon explicitly differentiating (G), as in (4.13) above, the inter- 
action term only appears a t  the time t ,  when U is just U, so one still has the simple 
form 

k 

= b'(t-t ') n S ( U ~ - U ~ )  (A2.3) 
and the similar equation for (F) .  k 

Appendix 3 
One needs to evaluate the expression 

M;P Mf&: (9["'9{7' +g? 'B{P)  (A 3.1) 

to obtain the coefficient in the integral for S.  
Now S,"a' must have the structure 9,"a'Sk so to simplify the analysis since 

= 2 
& 

one may write the coefficient as 

(A 3.2) 

In  a compressed notation this is 

which whenewritten out becomes 

(2n)-6B{(kBIBjBkl)+(kgiBkBjl) + (kgjB@kl) +(k9j1) ( B k g l ) ) .  (A3.6) 
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This can be written in terms of a symmetric part under the interchange of 
k and j 

(27T)-6 i{(kglgjgkl) + (kglgkgjl)  + (kgj919kl) + (kgjl)  ( 9 k g l )  

+ (j919kgjl) + (jgIgj9kl) + (j9k919jl) + (jgkl) (gj91)) (A 3.7)  

and an antisymmetric part 

(2n)-64{(1gj1) + 2(kglgj9kl) - ( 1 g k 1 )  (gig]) - 2(j91gkgj1)]. (A 3.8) 

The symmetric part is just the coefficient in X with 1 and k interchanged, whilst 
the antisymmetric part gives 

(27r-6 +{12 [cosz O,, - cos2 O,,] - (k . j) [cosz Okl - cosz O,,]}. (A 3.0) 

In all then, since one may leave the antisymmetric part in L,, for convenience 
in writing, one has 

Lkjl = &[( 1 - 2 cosz Okj cos2 O,, + cos Okj  cos O,, cos O,,) k2 - (k2 - 1 .  j) cos2 O,]. 

(A 3.10) 

Appendix 4 
The series is obtained by successively solving equations of the type 

(A 4.1) 

To obtain a picture of the right-h.and side one must invent a graphical notation 
(as in the virial cluster expansion of a gas or the Feynman diagrams) for alge- 
braically it becomes very complicated. The diagrams however are quite different 
from the examples mentioned and are constructed this way. For M write a dot, 
for u a full line, for a/au a dotted line. Then MgRufui' a/auTk is written 

--+--< k 

where the arrows give a vector sense so that 

l + j + k  = 0. 
Similarly one can define 

(A 4.2) 

;;--;;@ and - - - - -  (A 4.3, A 4.4)  

It will be assumed that dotted lines will always be drawn to the left, whilst 
full lines have arbitrary directions. Now to solve (A4.1) one needs the right- 
hand side in Hermite polynomials where upon the inverse of the right-hand 
differential operator is (x nkWk)-l. It will turn out that these factors can be 

easily inferred from the diagrams and need not appear explicitly. That being 
k 
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the case Fn+t will consist of combinations of the diagrams (A 4.1,2, 3) running 
across the paper from right to left as they would in an algebraic expansion. 
For example F2 consists of 

(A 4.5) 

and F4 of 

(A 4.6) 

and similar terms in R, and in S and R. 
Now the definition of S and R is that 

(A 4.7) 

If one starts to perform the integrals it is clear that a a/auj must meet a uj to 
its left or, by parts, the integral vanishes. In  other words the dotted lines in the 
diagrams either meet and annihilate a full line, or else meet one of the 'external' 
u k ,  upk of the integral (A4.7), or else give zero. Clearly they all act to their left. 
Now consider the remaining full lines. They also give zero unless they can pair 
with another, i.e. a uj must find another u - ~  to be non-vanishing. (This amounts 
to the same as replacing In order that a contribution be 
made to A 4.7, it  must follow that all the lines but two in the diagram must link 
up, two full lines giving a q, a full and a dotted giving unity, or more precisely a 
9 factor. The two emerging lines consist of the dotted line emerging from the 
first subdiagram on the left, and then either a dotted line (i.e. S like) or a full 
line (R like). Both emerging lines are labelled k. It is possible for say uj uPj uj u-j 
to appear, i.e. higher Hermite polynomials, but their contribution always turns 
out to be of order A relative to the terms already noted and so the volume will 
now be assumed so large that this possibility can be ignored. There now remains 
the terms in (Cnkwk)-'. It is clear that the nk are either zero or unity and they 
can be characterized this way: the diagrams are well ordered from right to left. 
So if a vertical line is drawn between each junction it will cut lines of the diagram 
and for every cut of a line marked j an w j  is added to the sum and such a factor 

by H, and HIj 
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(Xw)-l  is inserted between each junction. Some examples should make this clear. 
Consider working to order F2. The diagrams are 

. -. . . . . . . . _.._ - 0  ------o I 

-..... 
_...___ 0, 1 1 2 .  

(wk + wj + W k - j ) - 1  

A vertical line gives the factor 

in each of (A 4.8): 
- k - j  

k 

( A  4.8) 

(a 4.9) 

The equations of 9 5 are got by equating the S and R like parts of A 4.8, 9 to zero, 

-. -. . . . 
_._..... @ + ---Q = 0, (A 4.1 0) 

(A4.11) 

where the two full lines in the ‘bubble’ in (A4.10) give qjqPk+ i.e. (5.16), and 
in (A4.11) the one full line gives qi, the mixed line 3, i.e. (5.19). 

If one now goes to fourth order one gets many diagrams. Use the first approxi- 
mation to 8 and R, i.e. (A4.10, l l ) ,  some sets of diagrams already completely 
cancel, for example 

-.... 

(A4.12) 

/? 
cancels exactly with 

(A 4.13) 

(A4.14) 
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(A 4.15) 

These have the same M and q factors but the (Xu) factors are different. For 
the former, one has 

(U-k-j f U j  f O)k)-' (w-k-j f wl+ u-j-I$- Wk)-' (wj f w-k-1 f wk)-', 

whilst for the latter, recalling the integral for R, one has 

(w-k-j + Wj + u k ) - l  (u, f w-j-1-k Uj)-' (wj f 0-k-j f wk)-', 

differing by a single term in the central factor. (The topologically similar 
terms in the perturbation expansion of electrodynamics do cancel exactly.) 
Finally, there are terms which do not contain any subdiagram equivalent to a 
lower order and are topologically irreducible. Such a term is 

(A4.16) 

and with the residue of the partially cancelled terms, these terms give rise to 
the corrections to R and X in this order. By counting lines and (Xu)-' factors, 
the formal expressions quoted in $ 6  are now readily obtained. 

The crude evaluation quoted in $10, is obtained by ignoring the partially 
cancelled diagrams and assuming the value of the irreducible diagram can be 
approximated by distorting them into cancelling diagrams, for example 

Diagrams of the latter type are readily evaluated, the one shown being RtIwk. 
Adding all the types up with due regard to sign one obtains the estimate quoted 
in $ 10. 

These diagrammatics can be extended to cover the case in which P([F]) has a 
general distribution which is only approximately Gaussian, but since the 
generalization is quite straightforward it will not be given. 

18 Fluid Mech. 18 




